

I
HMPA. This would explain the larger $K_{\text {disp }}$ for DMMA ${ }^{-}$. than for COT$^{-}$.

Conclusions

The spin distribution in the DMMA anion radical (free of ion association) is similar to that of a monosubstituted COT anion radical, where the substituent acts as an extension of the π conjugation (i.e., a phenyl group). The dianion of DMMA readily ion pairs with metal cations in solvents other than HMPA, which drives the disproportionation far to the right and accounts for the fact that the DMMA anion radical has not been observed prior to this report. The stabilities of the dianions of DMMA and TBCOT are enhanced by the interaction of the cation with the nitrogen and/or oxygen atoms in the solid state. The crystal lattice energies of these solid dianion salts appear to play a more dominant role in controlling the heats of formation from the neutral molecules and sodium metal than do aromaticity considerations and the effect of the nitrogen upon the aromatic character of the dianion.

Experimental Section

X-band ESR spectra were recorded on a Varian E-4 spectrometer that is interfaced to a 64K MINC II computer system. The temperature was controlled within $\pm 2^{\circ} \mathrm{C}$ with a Varian V-4557 variable temperature controller, which was calibrated with an iron-constantan thermocouple.

Solvent-free dianion salts were prepared as previously described, ${ }^{11}$ and they were placed into thin-walled evacuated glass bulbs. To ensure that
no THF was left in the dianion salts, $\mathrm{D}_{2} \mathrm{O}$ was added and the solution submitted to NMR analysis. No THF was found in the $\mathrm{D}_{2} \mathrm{O}$. Other glass bulbs were broken under 100 mL of water in a modified cell of a Parr solution calorimeter. ${ }^{6}$ The data collection, analysis of the calorimeter contents, and calorimeter apparatus were exactly as previously described. ${ }^{6}$

The anion radicals were generated via alkali-metal reduction in freshly distilled HMPA under high vacuum as described earlier.' After complete dissolution of the metal mirror, an ESR sample was sealed off from the apparatus. Two samples (one from a COT reaction and one from a DMMA reaction) were compared for spin concentration. The ESR data were collected with the maximum modulation amplitude as described by Goldberg ${ }^{12}$ to minimize the error in obtaining the relative anion radical concentration from the double integral of the ESR signal. The ESR data were sent directly into the computer for double integration, and the numerical value obtained from the computer was used for A. Since the DMMA anion radical solutions were slowly decomposing, a correction had to be applied to A to account for this loss of anion radical. The half-life of the anion radical in HMPA is 23 min at $0^{\circ} \mathrm{C}$. This short half-life, coupled with the fact that 1-h scan times are necessary to record a well-resolved spectrum containing over 3000 ESR lines, makes it impossible to record a full well-resolved spectrum.

The DMMA was synthesized by the method of Paquette and coworkers. ${ }^{13}$ The purity of the final fractionally distilled product was found to be greater than 98% via VPC and NMR analysis.

Acknowledgment. We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this work. We are grateful to the National Science Foundation for the purchase of the computer system.

Registry No. DMMA anion radial, 69134-59-4; DMMA dianion, 86709-88-8.
(12) Goldberg, I. B. J. Magn. Reson. 1978, 32, 233.
(13) Paquette, L. A.; Kakihana, T.; Hansen, J. F.; Phillips, J. C. J. Am. Chem. Soc., 1971, 93, 152.

Azide-Water Competition in Solvolysis Reactions. A Revisit of the Reactivity-Selectivity Relationship ${ }^{1,2}$

Rachel Ta-Shma and Zvi Rappoport*
Contribution from the Department of Organic Chemistry. The Hebrew University. Jerusalem 91904. Israel. Received January 24. 1983

Abstract

The suggested linearity between the logarithms of the solvolysis rate constant ($k_{\text {solv }}$) of RX and the selectivity ($k_{\mathrm{N}} / k_{\mathrm{w}}$) in capture of the intermediate cation R^{+}by water (W) and $\mathrm{N}_{3}(\mathrm{~N})$ in 80% acetone was reinvestigated by using extended literature data. The assumptions involved in deriving the $k_{\mathrm{N}} / k_{\mathrm{w}}$ values, such as first-order dependency on the nucleophile concentration in its reaction with R^{+}and the temperature, solvent, nucleofuge, and other extrapolations required for obtaining the parameters, were discussed. The extended $\log k_{\text {solv }}$ vs. $\log \left(k_{\mathrm{N}} / k_{\mathrm{W}}\right)$ plot, which is based on the revised set of values, is not linear and composed of five regions: (a) Ritchie's constant selectivity region; (b) a border region where the selectivity increases more than the reactivity and which may be an artifact; (c) an apparent reactivity-selectivity (RS) region with an appreciable scatter of the points, where $\log \left(k_{\mathrm{N}} / k_{\mathrm{W}}\right)$ decreases on decreasing $k_{\text {solv }}$ (the reaction with $\mathrm{N}_{3}{ }^{-}$in this region is diffusion controlled and the plot reflects a $\log k_{\text {solv }}$ vs. $\log k_{\mathrm{w}}$ relationship); (d) a low $k_{\text {solv }}$ and nearly constant low selectivity region where hindrance to nucleophilic approach to the intermediate may sterically enforce a preassociation ion pair mechanism on the reaction; (e) an inverted RS region, where the selectivity increases on decreasing $k_{\text {sodv }}$ and where the reaction with $\mathrm{N}_{3}{ }^{-}$is mostly $\mathrm{S}_{\mathrm{N}} 2$. The various mechanistic regions were discussed in relationship to the existence and the lifetimes of the cationoid intermediates.

According to the reactivity-selectivity principle (RSP), in a series of similar reactions the less reactive reagent shows the highest selectivity. The principle is used extensively in the study

[^0]Scheme I

of organic reactions mechanisms and was reviewed recently several times. ${ }^{3.4 \mathrm{~b}, \mathrm{c}}$ However, many examples contradicting the RSP
started to accumulate recently, ${ }^{4-6}$ the principle was strongly criticized, ${ }^{4 c, 6 a, 8}$ and it was suggested ${ }^{6 a}$ " that the RSP should be abandoned as a general principle".

The RSP was applied frequently with some success in $\mathrm{S}_{\mathrm{N}} 1$ reactions. ${ }^{3 a}$ On the assumption that $k_{\text {solvolysis }}\left(k_{\text {solv }}\right)$ reflects carbocation stability and reactivity ${ }^{7}$ (i.e., the faster solvolysis gives the more stable carbocation that reacts more slowly with a nucleophile), a relationship between carbocation stability and its selectivity toward a pair of nucleophiles was found. Pairs of nucleophiles studied involved the solvent (e.g., $\mathrm{H}_{2} \mathrm{O}$ or AcOH) and $\mathrm{Cl}^{-},{ }^{8} \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{EtOH},{ }^{9}$ and $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{N}_{3}{ }^{-.}{ }^{10.11}$

Sneen and co-workers ${ }^{10}$ plotted log $k_{\text {solv }}$ for a series of alkyl chlorides (RCl) in 80% acetone at $0^{\circ} \mathrm{C}$ vs. the selectivity measure $\log \left(k_{\mathrm{N}} / k_{\mathrm{W}}\right)$, where k_{N} and k_{W} are the second-order constants for the reactions of the derived cationoid species R^{+}with N_{3}^{-}and $\mathrm{H}_{2} \mathrm{O}$ respectively, and their ratios were measured by applying Scheme I and the derived eq 1. They found a linear $\log k_{\text {solv }}$ vs.

$$
\begin{equation*}
k_{\mathrm{N}} / k_{\mathrm{W}}=\left(\% \mathrm{RN}_{3}\right)\left[\mathrm{H}_{2} \mathrm{O}\right] /\left((\% \mathrm{ROH})\left[\mathrm{N}_{3}^{-}\right]\right) \tag{1}
\end{equation*}
$$

$\log \left(k_{\mathrm{N}} / k_{\mathrm{W}}\right)$ relationship with a slope of 2.83 for seven substrates, ranging from t - BuCl to $\mathrm{Ph}_{3} \mathrm{CCl}$. Raber, Harris, Hall, and Schleyer (RHHS) ${ }^{11}$ extended this study by adding new and literature data. A plot of $\log k_{\text {solv }}$ in 80% acetone at $25^{\circ} \mathrm{C}$ vs. $\log \left(k_{\mathrm{N}} / k_{\mathrm{W}}\right)$ for 16 compounds gave a reasonable straight line with a slope of 3.8 covering 13 powers of ten in $k_{\text {solv }}$ and three powers of ten in selectivity. They also discussed several failures and limitations of the relationship.

The RHHS relationship was quoted several times as an important example of the RSP in solvolysis reactions and was used in mechanistic studies. ${ }^{3 \mathrm{a}}$.9e-h.12a-h However, various aspects of Sneen's and the RHHS work were criticized. Songstad and co-workers ${ }^{12 \mathrm{i}}$ questioned the applicability of N_{3}^{-}as a solvolysis probe. Harris and co-workers ${ }^{96}$ commented that Sneen's treatment assumes that R^{+}is a free cation, whereas ion pairs are involved in the solvolysis of many of the systems studied, and Dorfman
(3) (a) Pross, A. Adv. Phys. Org. Chem. 1977, 14, 69. (b) Giese, B. Angew. Chem. Int. Ed. Engl. 1977, 16, 125. (c) Agmon, N. J. Chem. Soc., Faraday Trans. 2 1978, 74, 388.
(4) (a) Gilbert, J. J.; Johnson, C. D. J. Am. Chem. Soc. 1974, 96, 5846. (b) Johnson, C. D. Chem. Rev. 1975, 75, 955. (c) Johnson, C. D. Tetrahedron 1980, 36, 3461.
(5) (a) Ritchie, C. D. Acc. Chem. Res. 1972, 5, 348. (b) Ritchie, C. D. J. Am. Chem. Soc. 1975, 97, 1170. (c) Ritchie, C. D.; Gandler, J. Ibid., 1979, 101, 7318. (d) Ritchie, C. D. Pure Appl. Chem. 1979, 51, 153.
(6) (a) Young, P. R.; Jencks, W. J. Am. Chem. Soc. 1979, 101, 3288. (b) Bordwell, F. G.; Hughes, D. L. J. Org. Chem. 1980, 46, 3320 . (c) Bradamante, S.; Pagani, G. A. Ibid. 1979, 44, 4735. (d) Koshi, K. M.; Roy, D.; Tidwell, T. T. J. Am. Chem. Soc. 1979, 101, 357. (e) Arnett, E. M.; Chawla, B. Ibid. 1979, 101, 7141. (f) Arnett, E. M.; Reich, R. J. Ibid. 1978, 100, 217; (g) Ibid. 1980, 102, 5892. (h) Lewis, E. S.; Kukes, S. Ibid. 1979, 101, 417; Lewis, E. S.; Kukes, S.; Slater, C. D. Ibid. 1980, 102, 303.
(7) Hammond, G. S. J. Am. Chem. Soc. 1955, 77, 334.
(8) (a) For a review, see: Ingold, C. K. "Structure and Mechanism in Organic Chemistry", 2nd ed.; Cornell University Press: Ithaca, NY, 1969; Chapter VII. (b) Stang, P. G.; Rappoport, Z.; Hanack, M.; Subramanian, L. R. "Vinyl Cations"; Academic Press: New York, 1979; Chapter 6.
(9) (a) Harris, J. M.; Becker, A.; Clark, D. C.; Fagan, J. F.; Kennan, S. L. Tetrahedron Lett. 1973, 3813. (b) Harris, J. M.; Clark, D. C.; Becker, A.; Fagan, J. F. J. Am. Chem. Soc. 1974, 96, 4478. (c) Harris, J. M.; Becker, A.; Fagan, J. F.; Walden, F. A. Ibid. 1974, 96, 4484. (d) Luton, P. R.; Whiting, M. C. J. Chem. Soc., Perkin Trans. 2 1979, 646. (e) Pross, A.; Koren, R. Tetrahedron Lett. 1975, 3613. (f) Karton, Y.; Pross, A., J. Chem. Soc., Perkin Trans. 2 1977, 1860. (g) Pross, A.; Aronovitch, H.; Koren, R. Ibid. 1978, 197. (h) Aronovitch, H.; Pross, A. Ibid. 1978, 540.
(10) Sneen, R. A.; Carter, V. J.; Kay, P. S. J. Am. Chem. Soc. 1966, 88, 2594.
(11) Raber, D. J.; Harris, J. M.; Hall, R. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1971, 93, 4821.
(12) (a) Yamamoto, K.; Higashimura, T. J. Pol. Sc. Pc. 1976, 14, 2621. (b) Harris, J. M.; Shafer, S. C.; Moffatt, J. R.; Becker, A. R. J. Am. Chem. Soc. 1979, 101,3295 . (c) McLennan, D. J. Tetrahedron 1978, 34, 2331. (d) Bordwell, F. G.; Mecca, T. G. J. Am. Chem. Soc. 1975, 97, 123. (e) Bordwell, F. G.; Wiley, P. F.; Mecca, T. G. Ibid. 1975, 97, 132. (f) Zoltewicz, J. A.; Kauffman, G. M. Ibid. 1977, 99, 3134. (g) Saito, S.; Yakubi, T.; Moriwake, T.; Okamoto, K. Bull. Chem. Soc. Jpn. 1978, 51, 529 . Saito, S.; Doihara, K.; Moriwake, T.; Okamoto, K. Ibid. 1979, 52, 2362 . (h) Okamoto, K.; Kinoshita, T. Chem. Lett. 1974, 1037. (i) Martinsen, A.; Austod, T.; Songstad, J. Acta. Chem. Scand., Ser. A 1975, A29, 661, (j) De Palma, W. M.; Wang, Y.; Dorfman, L. M. J. Am. Chem. Soc. 1978, 100, 5416.

Scheme II

and co-workers ${ }^{12 \mathrm{j}}$ suggested that $k_{\text {solv }}$ is not a good measure of the ion reactivity.

The actual $k_{\mathrm{N}} / k_{\mathrm{W}}$ values were rarely used. For example, Sneen's value ${ }^{10}$ for $t-\mathrm{BuCl}$ was quoted ${ }^{12 e .13}$ without reference to RHHS's different value. ${ }^{11}$ Sunko and co-workers ${ }^{14}$ calculated $k_{\mathrm{N}} / k_{\text {SOH }}$ values from the RHHS data in 80% EtOH. ${ }^{11}$ Kevill and Kim^{15} noted that the RHHS order $k_{\mathrm{N}} / k_{\mathrm{W}}$ (1-adamantyl) $>$ $k_{\mathrm{N}} / k_{\mathrm{W}}\left(2\right.$-adamantyl) ${ }^{11}$ will be reversed when calculating $k_{\mathrm{N}} / k_{\mathrm{EIOH}}$ ratios and concluded that points for the adamantyl systems should be omitted from the RS line. Pross and co-workers ${ }^{9 e . g}$ plotted Harris' $\log \left(k_{\mathrm{EtOH}} / k_{\mathrm{W}}\right)$ values ${ }^{9 \mathrm{~b}}$ against RHHS' $\log \left(k_{\mathrm{N}} / k_{\mathrm{W}}\right)$ values for the same compounds and found a linear relationship with a unit slope in contradiction with the RSP. ${ }^{2 b}$
A main problem results from Ritchie's work. Ritchie and co-workers found that the directly measured reaction rates of different stable cations with the same nucleophile (k_{Nu}) differ greatly, but the selectivities toward pairs of nucleophiles were constant and independent of the nature of $\mathrm{R}^{+} .5$ This is expressed by the "constant selectivity relationship" (eq 2) where N_{+}is the

$$
\begin{equation*}
\log \left(k_{\mathrm{Nu}} / k_{\mathrm{H}_{2} \mathrm{O}}\right)=N_{+} \quad N_{+}=\mathrm{constant} \tag{2}
\end{equation*}
$$

relative nucleophilicity of a nucleophile compared with water, i.e., a selectivity measure. In spite of a suggested modification ${ }^{16}$ deviations from eq 2 are usually small, ${ }^{17}$ and apparently both eq 2 and the RSP behavior found by Sneen and RHHS coexist for reactions of carbenium ions with nucleophiles. However, the RHHS relationship and eq 2 are mutually exclusive only if they apply to the same series of carbenium ions, but whereas $\mathrm{Ph}_{3} \mathrm{C}^{+}$ is the most stable cation on the RHHS line, eq 2 was observed for cations that are more stable than $\mathrm{Ph}_{3} \mathrm{C}^{+}$. Moreover, $k_{\text {solv }}$ values for RCl's whose R^{+}'s obey eq 2 are not available, and there are no directly measured k_{N} and k_{w} values for any of the RHHS compounds. This may suggest several explanations for the coexistence of the two relationships: (a) Equation 2 is a special case of the RSP. ${ }^{18}$ (b) All of Ritchie's compounds have the same $\log k_{\text {solv. }}$. This is highly unlikely for $\mathrm{Ar}_{3} \mathrm{CCl}, \mathrm{ArN} \mathrm{N}_{2} \mathrm{Cl}$, and tropylium chlorides and requires positive Hammett ρ values for the equilibrium ionization of $\mathrm{Ar}_{3} \mathrm{COH}$, in contrast with the available data. ${ }^{196}$ (c) The selectivity calculated from the directly determined k_{N} and k_{W} may differ from that obtained from the competition method; e.g., a general base catalysis by $\mathrm{N}_{3}{ }^{-}$could increase k_{w} in the competition experiment over its value in the absence of $\mathrm{N}_{3}{ }^{-}$. There is evidence for general base catalysis in the $\mathrm{R}^{+}+\mathrm{Nu}^{-}$ reaction. ${ }^{5 b, 19 a, c-8}$ Application of indirect kinetic methods, such as common ion rate depression or solvolysis-exchange in solvent SOH , for calculating analogous $k_{\mathrm{C} /} / k_{\mathrm{SOH}}$ and $k_{\mathrm{Br}} / k_{\mathrm{SOH}}$ selectivity ratios, ${ }^{20-23}$ showed that these values for $\mathrm{Ar}_{2} \mathrm{CHCl}$ in aqueous

[^1]acetone ${ }^{21 \mathrm{a}}$ or for several ring-substituted vinyl bromides in AcOH^{23} or in TFE, ${ }^{23 \mathrm{a}}$ where interference from ion pairing is minimal, ${ }^{23 \mathrm{c}}$ depend on $k_{\text {solv }}$ in accordance with the RSP. However, the RSP fails on increasing the steric hindrance to nucleophilic approach to the vinylic system. ${ }^{8 b}$ (d) Ritchie's cations are free and differ in selectivity from the solvolytically generated intermediates of the RS plots that are ion pairs. ${ }^{12 \mathrm{~d}}$

A more likely rationalization for the discrepancy of the two selectivity relationships was recently invoked. ${ }^{60,24,25 a}$ The reactions of the more stable ions obeying eq 2 are activation controlled, whereas less stable cations (e.g., those on the RHHS plot) react with $\mathrm{N}_{3}{ }^{-}$by diffusion-controlled rate. Hence, the RHHS relationship reflects a $\log k_{\text {soik }}$ vs. $\log k_{\mathrm{W}}$ relationship, rather than RSP. Indeed, extrapolation of the directly measured k_{W} and k_{N} values to reactions of N_{3}^{-}with ions less stable than $\mathrm{Ph}_{3} \mathrm{C}^{+}$gives k_{N} values above the diffusion-controlled value. ${ }^{24 \mathrm{~b}}$

Consequently, there are apparently phenomenologically and mechanistically different regions in the $\log k_{\text {solv }}$ vs. $\log \left(k_{\mathrm{N}} / k_{\mathrm{W}}\right)$ plot for the $\mathrm{N}_{3}-\mathrm{H}_{2} \mathrm{O}$ pair. In view of this, the increasing criticism of the RSP, and the different slopes of $\log k_{\text {solv }}$ vs. $\log \left(k_{\mathrm{N}} / k_{\mathrm{W}}\right)$ plots ${ }^{10,11}$ it seems interesting to revise and extend the SneenRHHS relationships. Hence, we analyze in detail below all the literature data known to us on the $\mathrm{N}_{3}-\mathrm{H}_{2} \mathrm{O}$ competition in solvolysis reaction. We first discuss general problems involved in calculations of the reactivity and selectivity values, and then we demonstrate the problems by comparing our recalculated values with those reported previously. We then present our revised data, together with new literature values and discuss the shape of the extended $\log k_{\text {solv }}$ vs. $\log \left(k_{\mathrm{N}} / k_{\mathrm{W}}\right)$ plot in mechanistic terms.

Analysis of Literature Data

Trying to construct a RS plot using $k_{\text {solv }}$ and $k_{\mathrm{N}} / k_{\mathrm{W}}$ values derived from product distribution raises three questions: (a) What is the validity of the assumptions that (i) $k_{\text {solv }}$ of RCl measures the ionization rate of RX and (ii) $k_{\text {solv }}$ is inversely related to the reactivity of the cationoid species (R^{+}), which is involved in the competitive product formation with N_{3}^{-}and $\mathrm{H}_{2} \mathrm{O}$? (b) To what extent are the assumptions involved in deriving eq 1 from Scheme I correct? (c) What are the extrapolations involving solvent, temperature, ionic strength, nucleofuge, and other effects that will give the best $k_{\text {solv }}$ and $k_{\mathrm{N}} / k_{\mathrm{W}}$ values? Analysis shows that the literature $k_{\text {solv }}$ and $k_{\mathrm{N}} / k_{\mathrm{W}}$ values obtained from different sources and by different methods are not always consistent.

The questions are connected. For example, if products are formed from both free ions and ion pairs their relative distribution and presumably the overall selectivities may depend on the solvent or the nucleofuge. Moreover, different intermediates can be captured at different regions of the mechanistic spectrum, and extrapolation from one region of the plot to another one requires caution.

Problems Associated with the Reactivity Term. Scheme I involves only a free carbenium ion intermediate, ${ }^{8 \mathrm{a}}$ but since in the majority of the solvolyzing systems reversibly formed ion pairs are kinetically important ${ }^{26}$ (Scheme II), ${ }^{27}$ the measured $k_{\text {solv }}$ is composite. When the ion pair return is extensive, $k_{\text {solv }} \ll k_{\text {ion }}$, and when it is low, $k_{\text {ion }} \sim k_{\text {solv. }}$. The solvolysis of many compounds for which data were analyzed involve ion pair return, but although
(22) Royer, D. E.; Daub, G. H.; Vander Jagt, D. L. J. Org. Chem. 1979, 44, 3196.
(23) (a) Rappoport, Z.; Apeloig, Y.; Greenblatt, J. J. Am. Chem. Soc. 1980, 102, 3837. (b) van Ginkel, F. I. M.; Hartman, E. R.; Lodder, G.; Greenblatt, J.; Rappoport, Z. Ibid. 1980, 102, 7514. (c) Rappoport, Z.; Greenblatt, J. Ibid. 1979, 101, 1343.
(24) (a) Kemp, D. S.; Casey, M. L. J. Am. Chem. Soc. 1973, 95, 6670. (b) Rappoport, Z. Tetrahedron Lett. 1979, 2559.
(25) (a) Richard, J. P.; Jencks, W. P. J. Am. Chem. Soc. 1982, 104, 4689; (b) Ibid. 1982, 104, 4691.
(26) Raber, D. J.; Harris, J. M.; Schleyer, P. v. R. In "Ions and Ion Pairs in Organic Reactions"; Szwarc, M., Ed.; Wiley-Interscience: New York, 1973; Vol. II.
(27) (a) Winstein, S.; Clippinger, E.; Fainberg, A. H.; Heck, R.; Robinson, G. C. J. Am. Chem. Soc. 1956, 78, 328. (b) Winstein, S.; Appel, B.; Baker, R.; Diaz, A. Spec. Publ.-Chem. Soc. 1965, No. 19, 109.

Figure 1. A plot of $\log k_{\text {solv }}(\mathrm{RCl})$ in 80% acetone at $25^{\circ} \mathrm{C}$ vs. \log ($k_{\mathrm{N}} / k_{\mathrm{W}}$). The numbers are those of Table III. Triangles are for Richard and Jencks' data, ${ }^{25 a}$ and circles for the other systems of Table III. Different reported values for the same system are connected by a line. A full line extending from a point reflects the calculated uncertainty. Mechanistic regions are designated by letters a-e. The dashed line is the RHHS line and the full line in region e is a regresion line through Richard and Jencks' $\mathrm{S}_{\mathrm{N}} 2$ systems.
apparent measures of $k_{\text {solv }} / k_{\text {ion }}$ values are sometimes available, ${ }^{28}$ we followed RHHS and used a corrected value only in one case (where $k=k_{\text {solv }}+k_{\text {rear }}$). ${ }^{28}$ In other cases we did not attempt to use $k_{\text {ion }}$ values for several reasons.

First, even when the extent of ion pair return can be estimated ${ }^{28}$ the corrected value may still differ from $k_{\text {ion }}$, due to unmeasured hidden return. Second, such data are available only for a few compounds, and use of $k_{\text {ion }}$ for several compounds and $k_{\text {solv }}$ for others is unjustified. Moreover, $k_{\text {soll }}$ values are almost always used for estimating carbenium ion stabilities. This seems to be justified since a linear correlation exists between $\log k_{\text {solv }}(\mathrm{RCl})$ values in EtOH and the heats of ionization of the same RCl to form R^{+} in nonnucleophilic solvent mixtures. ${ }^{29.30}$ However, a problem arises for compounds that solvolyze at least partially via a k_{s} process or via $\mathrm{S}_{\mathrm{N}} 2$ reaction.
A second problem, previously discussed by RHHS, ${ }^{11}$ is the ground-state effect when two different isomeric precursors RX and $\mathrm{R}^{\prime} \mathrm{X}$ give the same R^{+}at different rates. This is the case for the allylic isomers $\mathrm{PhCH}(\mathrm{OPNB}) \mathrm{CH}=\mathrm{CHMe}$ and $\mathrm{PhCH}=$ $\mathrm{CHCH}(\mathrm{OPNB}) \mathrm{Me}$, which differ 300 -fold in reactivity, ${ }^{286}$ but even the selectivities, which presumably should be identical, differ by a factor of $2 .^{32}$ The problem is less severe for the isomeric pairs $\mathrm{ArCH}_{2} \mathrm{CHMeOTs}^{2}$ and $\mathrm{MeCHArCH} \mathrm{O}_{2} \mathrm{OTs}(\mathrm{Ar}=\mathrm{An}, \mathrm{Tol}, \mathrm{Ph})$

[^2]Table I. Dependence of $k_{\mathrm{N}} / k_{\mathrm{W}}$ Values on $\left[\mathrm{H}_{2} \mathrm{O}\right]$ and Other Parameters in Aqueous Acetone

compd	$10^{2}\left[\mathrm{NaN}_{3}\right], \mathrm{M}$	$T,{ }^{\circ} \mathrm{C}$	$\% \mathrm{Me}_{2} \mathrm{CO}$	$k_{\mathrm{N}} / k_{\mathrm{W}}$	ref
$\mathrm{Ph}_{2} \mathrm{CHBr}$	2	25	70	170	41
	4	25	90	200	41
	4	50	90	180	41
	4	25	70	100	14
	10	50	90	56^{a}	20
$\mathrm{Ph}_{2} \mathrm{CHCl}$	50	50	66.7	96	14
	5	25	66.7	101^{a}	39
	5	25	75	$102,{ }^{a} 58,{ }^{\text {b }} 157^{c}$	39
	5	25	87.5	$88,{ }^{a} 68{ }^{\text {b }}$	39
	$4-10^{d}$	35	80	50	42
	1	50	90	56^{a}	20
Tol ${ }_{2} \mathrm{CHCl}$	5.2	0	50	$1200 e^{e, f} 1606^{a, g}$	38 a
	5.4	0	80	$420 e^{e} 518^{\text {a }}$	38 a
	5.1	0	85	$316,{ }^{e} 401^{\text {a }}$	38 a
	5.1	0	90	$227{ }^{\text {e. }}$. $301^{\text {a }}$	38 a
	5.1	10	90	$316^{e, i}$	38 b
	5	25	50	$1112^{a, j}$	39
	5	25	66.7	$888,{ }^{\text {a }} 577{ }^{\text {b }}$	39
	5	25	75	$716,{ }^{,} 503{ }^{\text {b }} 579{ }^{c}$	39
	5	25	87.5	$400,{ }^{a} 291,{ }^{\text {b }} 384{ }^{\text {k }}$	39
$\mathrm{Ph}_{3} \mathrm{CCl}$	0.1-0.2	25	94^{l}	9×10^{4}	41
	0.15-0.3	-34	85	11×10^{4}	41
	$4.7{ }^{m}$	30	80	1.12×10^{4}	43
	5	25	66.7	365^{a}	39
	5	25	75	$556,{ }^{a} 2620^{c}$	39
	5	25	87.5	454, ${ }^{a} 2420^{k}$	39
$\mathrm{Ph}_{3} \mathrm{CF}$	m	30	80	4480	43
	0.4	25	80	24×10^{4}	41
	0.13-0.25	25	50	28×10^{4}	41
$\mathrm{Ph}_{3} \mathrm{COAc}$	0.094^{m}	30	80	4.48×10^{4}	43
$\mathrm{Ph}_{3} \mathrm{CSCN}$	0.1-0.2	25	50	3.1×10^{5}	41
6-(chloromethyl)benzo[a]pyrene	0.02	25	80	$4.1 \times 10^{4} n$	22
	0.1-0.5	25	50	3.9×10^{40}	22

${ }^{a}$ Calculated from [\% $\left.\mathrm{RN}_{3}\right]_{\infty}$ and corrected for $\mathrm{N}_{3}{ }^{-}$consumption by the reaction and by the liberated acid. ${ }^{b}$ At $I=0.30 \mathrm{M}$ with added LiClO_{4} or $\mathrm{LiNO}_{3} .{ }^{c}$ In 75% dioxane. ${ }^{d}$ Constant ionic strength $I=1 \mathrm{M}$. ${ }^{e}$ Calculated from [$\left.\% \mathrm{RN}_{3}\right]_{\infty}$ and corrected for $\mathrm{N}_{3}{ }^{-}$consumption by the reaction. Comparison of $\left[\% \mathrm{RN}_{3}\right]_{0}$ and $\left[\% \mathrm{RN}_{3}\right]_{\infty}$ values suggest that correction as in footnote a is unnecessary. $f\left[\% \mathrm{RN}_{3}\right]_{\infty}=60 \%$. ${ }^{g}$ Minimum value since $\left[\mathrm{NaN}_{3}\right] /[\mathrm{RCl}]=0.9 .{ }^{h}\left[\% \mathrm{RN}_{3}\right]_{\infty}=60.3 \% .{ }^{i}\left[\% \mathrm{RN}_{3}\right]_{\infty}=67 \% .{ }^{j}\left[\% \mathrm{RN}_{3}\right]_{\infty}=50 \% .{ }^{k}$ In 87.5% dioxane. ${ }^{l}$ Containing 2% dioxane. ${ }^{m}$ Constant ionic strength $I=0.094 \mathrm{M}$. ${ }^{n}$ From product composition; measured spectroscopically. ${ }^{\circ}$ Measured kinetically from inhibition of the common ion effect.
where the rate ratios in the k_{Δ} route to form the same phenonium ions are 2-5. ${ }^{33}$

The main practical problem is to calculate $k_{\text {solv }}$ (80% acetone, $25^{\circ} \mathrm{C}$) from literature data, which are frequently at different conditions. The necessary extrapolations related to temmperature, ionic strength, nucleofuge, or solvent determine the quality of the plot.

An example is the extrapolation required for a change in nucleofuge from p-nitrobenzoate (OPNB) to chloride. RHHS previously used a $k_{\mathrm{C} /} / k_{\text {OPNB }}$ ratio of 3×10^{4} in order to calculate $k_{\text {solv }}$ for the allylic chloride 6 of Table III, presumably on the basis of data for the tert-butyl system, ${ }^{34}$ for which we calculated a value of 2.64×10^{4} at $25{ }^{\circ} \mathrm{C}$ in 80% acetone. Data for the $\mathrm{Ph}_{2} \mathrm{CHX}$ system, ${ }^{35}$ obtained by using the Grunwald-Winstein equation ${ }^{36}$ and temperature extrapolation gave $k_{\mathrm{Cl}} / k_{\mathrm{OPNB}}=4.41 \times 10^{5}$ in 80% acetone at $25^{\circ} \mathrm{C}$. This value may be more appropriate for use with the allylic systems whose $k_{\text {sodv }}$ is closer to that of $\mathrm{Ph}_{2} \mathrm{CHCl}$ than for $t-\mathrm{BuCl}$. However, this argument is based on the RSP, and we therefore gave both values in our table of revised values (Table III) and plotted them in Figure 1.

Temperature and solvent corrections were generally introduced by using the appropriate E_{a} values and Grunwald-Winstein m values ${ }^{36}$ when available. Otherwise E_{a} values for closely related

[^3]compounds or m values in closely related solvents were used. Corrections for the ionic strength effect were not necessary.

Problems in Calculation of Consistent $\boldsymbol{k}_{\mathrm{N}} / \boldsymbol{k}_{\mathrm{W}}$ Values. Several problems are also associated with the calculations of reliable $k_{\mathrm{N}} / k_{\mathrm{W}}$ values by using Scheme I. First, is free R^{+}the only product-forming intermediate, or are there several cationoid intermediates with different or similar selectivities, giving an average overall selectivity? Second, is the assumption that the productforming steps are first order in $\left[\mathrm{H}_{2} \mathrm{O}\right]$ and $\left[\mathrm{N}_{3}{ }^{-}\right]$correct? Third, can incorrect $k_{\mathrm{N}} / k_{\mathrm{W}}$ values result from product formation by nonsolvolytic routes? Fourth, can a general base catalysis by $\mathrm{N}_{3}{ }^{-}$ in the water reaction affect the $k_{\mathrm{N}} / k_{\mathrm{W}}$ values? Fifth, there are practical questions involving extrapolation dealing with solvent, temperature, nucleofuge, and ionic strength effects.

Dependence of the Selectivities on the Water Concentration. Scheme I implies a first-order dependence on $\mathrm{H}_{2} \mathrm{O}$ in the $\mathrm{R}^{+}+$ $\mathrm{H}_{2} \mathrm{O}$ step, i.e., the $\left[\mathrm{H}_{2} \mathrm{O}\right]$ terms appears in eq 1 when the dimensionless $k_{\mathrm{N}} / k_{\mathrm{W}}$ values are calculated. The validity of this assumption is not encountered when selectivities of various R^{+}s are compared in the same media, e.g., water ${ }^{5}$ or $50 \% \mathrm{TFE}-50 \%$ $\mathrm{H}_{2} \mathrm{O},{ }^{25 a}$ but it becomes pertinent on comparing data from various sources in different solvent compositions.

Water is always in a large excess over RX and the possibility of a solvent sorting in the vicinity of the transition state cannot be discarded. In this case, if a large fraction of the ROH derives from collapse of the solvent shell, the $k_{\mathrm{N}} / k_{\mathrm{W}}$ values will be little affected by a change in the water concentration. In studies in the binary mixtures $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH},{ }^{9} \mathrm{EtOH}-\mathrm{TFE},{ }^{37}$ and TFE- $\mathrm{H}_{2} \mathrm{O}^{376}$ it was assumed that each of the solvent components reacts with
(37) (a) Rappoport, Z.; Ben-Yacov, H.; Kaspi, J. J. Org. Chem. 1978, 43, 3676. (b) Rappoport, Z.; Kaspi, J. J. Am. Chem. Soc. 1980, 102, 3829.
R^{+}in an overall second-order process, and equations similar to eq 1 were used for calculating the selectivities. The assumption may be justified since both solvents compete for a position in the immediate solvation shell around R^{+}. This is not the case of $\mathrm{N}_{3}{ }^{-}$ vs. $\mathrm{H}_{2} \mathrm{O}$ competition.

The relevant data, which are available only for four systems (Table I), do not give a clear-cut answer. One view is due to Ingold et al. whose solvolysis of $\left(p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{CHCl}$ in $50-90 \%$ acetone at $0^{\circ} \mathrm{C}$ involves the most extensive change in solvent composition ${ }^{38 \mathrm{a}}$ They found that the final $\left[\mathrm{RN}_{3}\right]$ values $\left(\left[\mathrm{RN}_{3}\right]_{\infty}\right)$ were independent of $\left[\mathrm{H}_{2} \mathrm{O}\right]$. The relevant $k_{\mathrm{N}} / k_{\mathrm{W}}$ values, calculated by us, change accordingly from 227 in 90% acetone to 1200 in 50% acetone. Golomb's ${ }^{39}$ results also show dependence of the dimensionless $k_{\mathrm{N}} / k_{\mathrm{w}}$ on $\left[\mathrm{H}_{2} \mathrm{O}\right]$ for the same system in $50-87.5 \%$ acetone. As stated by Ingold in 1969 "provided sufficient water is present for the purpose, the first formed carbonium ion is solvated by a shell of fixed composition so that the rates at which the ion covalently unites with one of the solvating water molecules is independent of the composition of the bulk of the medium" ${ }^{8,}{ }^{8}$ Supporting evidence is the constancy of the $\alpha_{\mathrm{Cl}}=k_{\mathrm{C}} / k_{\mathrm{H}_{2} \mathrm{O}}\left[\mathrm{H}_{2} \mathrm{O}\right]$ $\left(\mathrm{M}^{-1}\right)$ values for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{Cl}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{X}-p(\mathrm{X}=t$ - $\mathrm{Bu}, \mathrm{H})$ in 80% and 90% acetone and for $\left(p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{CHCl}$ in 70% and 90% acetone. ${ }^{20}$ Likewise, reduction of $\mathrm{Ph}_{2} \mathrm{CHCl}$ or $\mathrm{PhCMe}_{2} \mathrm{Cl}(\mathrm{RCl})$ by BH_{4}^{-}under solvolytic conditions gives a solvent-independent percentage of the reduction products (RH) in $65-88 \%$ diglyme. ${ }^{40}$

The other data of Table I are consistent with a first-order dependence on $\left[\mathrm{H}_{2} \mathrm{O}\right]$. Five different groups investigated the benzhydryl system, ${ }^{14,20,39,41,42}$ and Table I shows that the $k_{\mathrm{N}} / k_{\mathrm{W}}$ values for the bromide in 70-90\% acetone and for the chloride in 66.7-87.5\% acetone that are obtained in the same laboratory are nearly independent of the solvent composition. Likewise, the $k_{\mathrm{N}} / k_{\mathrm{W}}$ values for the chloride and the bromide in media of similar compositions are similar when measured in the same laboratory, but they differ if measured in two laboratories.

For the trityl $\left(\mathrm{Ph}_{3} \mathrm{CX}\right)$ system Swain and co-workers ${ }^{41}$ found reasonably $\left[\mathrm{H}_{2} \mathrm{O}\right.$]-independent $k_{\mathrm{N}} / k_{\mathrm{W}}$ values for $\mathrm{X}=\mathrm{Cl}, \mathrm{F}$. However, the values were nucleofuge dependent, being in a 1:2.6:3.1 ratio for $\mathrm{X}=\mathrm{Cl}, \mathrm{F}, \mathrm{SCN}$, respectively. Nearly constant dimensionless $k_{\mathrm{N}} / k_{\mathrm{W}}$ values for $\mathrm{X}=\mathrm{Cl}$ result also from Golomb's data ${ }^{39}$ but they were 200 -fold lower than those of Swain. ${ }^{41}$ Both the lower values and the dependence on the nucleofuge were ascribed by Hill ${ }^{43}$ to insufficient mixing during the reaction, resulting in a local depletion of $\mathrm{N}_{3}-$ in the vicinity of the rapidly generated ion. Indeed, by applying rapid mixing, his values for $\mathrm{X}=\mathrm{Cl}$ are 20 -times larger than those of Golomb. The relative $k_{\mathrm{N}} / k_{\mathrm{W}}$ values also increased when formation of R^{+}was slower, being 1:2.5:10 for $\mathrm{X}=\mathrm{Br}, \mathrm{Cl}, \mathrm{OAc}$, respectively.

Mild support for solvent-independent $k_{\mathrm{N}} / k_{\mathrm{w}}$ values comes from the decrease of the α_{GI} values for $\mathrm{Ph}_{2} \mathrm{CCl}_{2}$ on increasing the water content in $70-85 \%$ acetone. ${ }^{21 b}$ Similar behavior was observed in solvolysis of vinyl bromides in TFE- $\mathrm{H}_{2} \mathrm{O} .{ }^{44}$
k_{W} was measured directly only twice in two solvent compositions. In the reaction of the (p-(dimethylamino) phenyl)diphenylcyclopropenium ion with water in $20 \% \mathrm{MeCN}-80 \% \mathrm{H}_{2} \mathrm{O}$ and in $2 \% \mathrm{MeCN}-98 \% \mathrm{H}_{2} \mathrm{O}$, Green and $\mathrm{Taft}^{45 \mathrm{a}}$ found $k_{\mathrm{w}}\left[\mathrm{H}_{2} \mathrm{O}\right]$ values of 0.22 and $0.34 \mathrm{~s}^{-1}$, respectively, giving the relatively [$\mathrm{H}_{2} \mathrm{O}$]-independent $10^{3} \mathrm{k}_{\mathrm{W}}$ values of 4.95 and $6.24 \mathrm{M}^{-1} \mathrm{~s}^{-1}$. However, for 9 -arylxanthydrol ($\mathrm{Ar}=\mathrm{Ph}, p-\mathrm{An}$) the same $k_{\mathrm{W}^{-}}$
(38) (a) Bateman, L. C.; Hughes, E. D.; Ingold, C. K. J. Chem. Soc. 1940, 974. (b) Hawdon, A. R.; Hughes, E. D.; Ingold, C. K. Ibid. 1952, 2499.
(39) Golomb, D. J. Chem. Soc. 1959, 1334.
(40) Bell, H. M.; Brown, H. C. J. Am. Chem. Soc. 1966, 88, 1473.
(41) Swain, C. G.; Scott, C. B.; Lohmann, K. H. J. Am. Chem. Soc. 1953, $75,136$.
(42) McLennan, D. J. J. Chem. Soc., Perkin Trans. 2 1974, 481.
(43) Hill, E. A. Chem. Ind. (London) 1965, 1696.
(44) Rappoport, Z.; Kaspi, J. J. Am. Chem. Soc. 1974, 96, 4518.
(45) (a) Green, L. R. Ph.D. Thesis, University of California, Irvine, CA, 1970. (b) Diffenbach, R. A. Ph.D. Thesis, University of California, Irvine, CA, 1966.
(46) Goering, H. L.; Hopf, H. J. Am. Chem. Soc. 1971, 93, 1224.
(47) Goering, H. L.; Broidy, R. G.; Sandrock, G. J. Am. Chem. Soc. 1970, 92, 7401 .

Table II. Concentration Dependence of the $k_{\mathrm{N}} / k_{\mathrm{W}}$ Values

compd	solvent	T. ${ }^{\circ} \mathrm{C}$	$\left[\mathrm{NaN}_{3}\right], \mathrm{M}$	$k_{\mathrm{N}} / k_{\mathrm{W}}$
1-adamantyl bromide	75\% dioxane ${ }^{11}$	100	0.06	20
			0.10	8.9
	$80 \% \mathrm{EtOH}^{11}$	75	0.02	5.5^{a}
			0.04	$2.5{ }^{\text {a }}$
			0.06	$2.5^{\text {a }}$
	$67 \% \mathrm{EtOH}^{14}$	77	0.01	$233{ }^{\text {b }}$
			0.05	$11^{\text {b }}$
			0.5	$2.7{ }^{\text {b }}$
2-adamantyl tosylate	75\% dioxane ${ }^{11}$	75	0.06	32
			0.10	16
	$80 \% \mathrm{EtOH}^{11}$		0.02	$0.82{ }^{\text {a }}$
			0.04	$1.7{ }^{\text {a }}$
			0.06	$2.0^{\text {a }}$
$\mathrm{Ph}_{3} \mathrm{CCl}^{43}$	80\% acetone	30	0.0056	256
			0.047	11120
$\begin{gathered} p-\mathrm{TolCH}(\mathrm{Ph})- \\ \text { OPNB }^{46} \end{gathered}$	90\% acetone	99.5	0.03	185
			0.0655	191
			$0.116^{\text {c }}$	123
$\begin{aligned} & p-\mathrm{AnCH}_{\mathrm{n}}(\mathrm{Me})- \\ & \text { OPNB }^{47} \end{aligned}$	90\% acetone	78.6	0.030^{d}	241
			0.050^{d}	260
			0.078^{d}	239
			$0.106^{d, e}$	238
			0.125^{d}	217
			0.153^{d}	192
			0.202^{d}	176
	67\% diglyme	40	0.05	632
			0.5	242

${ }^{a}$ Based on very low percent $\mathrm{RN}_{3}(0.1-0.7 \%)$. ${ }^{b} k_{\mathrm{N}} / k_{\mathrm{SOH}}$ values, probably calculated from ($\left[\% \mathrm{RN}_{3}\right] /([\% \mathrm{ROH}]+[\%$ ROEt $]))\left[\left(\left[\mathrm{H}_{2} \mathrm{O}\right]+[\mathrm{EtOH}]\right) /\left[\mathrm{NaN}_{3}\right]\right] .{ }^{c}$ The solubility of NaN_{3} above this concentration is limited. ${ }^{d}$ Reaction with $\mathrm{Bu}_{4} \mathrm{NN}_{3}$. ${ }^{\text {e }}$ See text.
[$\mathrm{H}_{2} \mathrm{O}$] values were found in $20 \% \mathrm{MeCN}-80 \% \mathrm{H}_{2} \mathrm{O}$ and in dilute aqueous $\mathrm{HClO}_{4}{ }^{45}$

Consequently, no definite conclusion concerning the dependence of the $k_{\mathrm{N}} / k_{\mathrm{W}}$ values on the [$\mathrm{H}_{2} \mathrm{O}$] term is presently possible, and we therefore, in cases of doubt, gave a range of dimensionless $k_{\mathrm{N}} / k_{\mathrm{W}}$ values on the basis of the available data and the assumptions used for deriving eq 1.
Dependence of the $\boldsymbol{k}_{\mathrm{N}} / \boldsymbol{k}_{\mathrm{W}}$ Values on the $\mathrm{N}_{3}{ }^{-}$Concentration. Equation 1 is also based on the assumed first-order dependence on the $\left[\mathrm{N}_{3}{ }^{-}\right.$] term in the capture process. Indeed, $k_{\mathrm{N}} / k_{\mathrm{W}}$ values that are independent of the $\left[\mathrm{N}_{3}^{-}\right]$were found for the relatively reactive $\mathrm{Ph}_{2} \mathrm{CHCl},{ }^{41} p$-Tol ${ }_{2} \mathrm{CHCl},{ }^{38 \mathrm{a}} \mathrm{Ph}_{3} \mathrm{CCl},{ }^{41}$ and $\mathrm{PhCH}-$ (OPNB) $\mathrm{CH}=\mathrm{CHMe} .^{32}$ With other, mostly less reactive systems, the $k_{\mathrm{N}} / k_{\mathrm{W}}$ values decrease appreciably on increasing [NaN_{3}] in aqueous EtOH, acetone, and dioxane, as shown in Table II.
In several cases a 2 -fold decrease in $\left[\mathrm{NaN}_{3}\right]$ results in a ca. 2 -fold increase in $k_{\mathrm{N}} / k_{\mathrm{W}}$, and for 1 -adamantyl bromide in 67% ethanol $k_{\mathrm{N}} / k_{\mathrm{W}}$ decreases 21 -fold on a 5 -fold increase in $\left[\mathrm{NaN}_{3}\right]{ }^{14}$ An explanation that was previously used ${ }^{26,48}$ for interpreting the behavior of "borderline" substrates ${ }^{49}$ is ion pairing of NaN_{3} at the concentration used. Incomplete dissociation of the $\mathrm{Na}^{+} \mathrm{N}_{3}^{-}$ ion pair to free $\mathrm{N}_{3}{ }^{-}$and lower reactivity of the ion-paired N_{3}^{-} toward the cation will account for the increased selectivity. This is probably the explanation for the behavior of $p-\mathrm{TolCH}(\mathrm{Ph})$ OPNB. ${ }^{46}$ The "true" $k_{\mathrm{N}} / k_{\mathrm{W}}$ values should then be obtained either by using $\mathrm{N}_{3}{ }^{-}$activities or by extrapolating the $k_{\mathrm{N}} / k_{\mathrm{W}}$ to $\left[\mathrm{Na} \mathrm{N}_{3}\right]_{0}$. These procedures were not applied when necessary, and the literature values are at different NaN_{3} concentrations. The problem is more important for less-reactive substrates, when the $k_{\mathrm{N}} / k_{\mathrm{W}}$ values are relatively low, and higher NaN_{3} concentrations are required for observing the RN_{3}.

Another explanation is ion pairing of the cationoid species. In the solvolysis of dianisylmethyl mesitoate in MeOH at a constant ionic strength, ${ }^{50}$ the selectivity parameter (\% RN_{3})/($\%$

[^4]ROMe) [$\mathrm{N}_{3}{ }^{-}$]) decreased from 1850 at $10^{-5} \mathrm{M} \mathrm{NaN}_{3}$ to 950 at $10^{-3} \mathrm{M} \mathrm{NaN}_{3}$. At these concentrations ion pairing of $\mathrm{Na}^{+} \mathrm{N}_{3}{ }^{-}$ is relatively unimportant. Ritchie suggested that "at least two intermediates with different selectivities are being trapped by $\mathrm{N}_{3}-\ldots$ " and concluded that "it is clear that the ion pair is considerably less selective". ${ }^{50}$ The decrease of the $k_{\mathrm{N}} / k_{\mathrm{W}}$ values for p - $\mathrm{AnCH}(\mathrm{Me}) \mathrm{OPNB}$ with $\mathrm{Bu}_{4} \mathrm{NN}_{3}$ in 90% acetone ${ }^{47}$ when [$\mathrm{N}_{3}{ }^{-}$] $>0.106 \mathrm{M}$ can be explained similarly. This is augmented by the observed change from a special salt effect at lower [$\mathrm{N}_{3}{ }^{-}$] to a normal salt effect at higher ones. ${ }^{47}$

If ion pairs are important in determining the selectivities of highly reactive RCl , their importance should be higher for less reactive substrates. Indeed, p-chlorobenzhydryl p-nitrobenzoate reacts with $\mathrm{N}_{3}{ }^{-}$in 90% acetone ${ }^{28 \mathrm{a}}$ exclusively at the ion pair stage so that free ions are probably not involved in reactions of less reactive substrates such as 1 - and 2 -adamantyl halides. Consequently, different cationoid species are probably captured at the two ends of the RHHS plot. However, an ion pair is not necessarily less selective than a free ion. Ritchie found very similar selectivities of a free triarylmethyl cation and an analogous zwitterionic model, ${ }^{51}$ and Sunko ${ }^{14}$ suggested that an intimate ion pair is more selective than more dissociated species.

Other differences between the stoichiometric and the actual $\mathrm{N}_{3}{ }^{-}$concentration are local depletion of $\mathrm{N}_{3}{ }^{-}$in an insufficiently mixed solution and consumption of $\mathrm{N}_{3}{ }^{-}$during the reaction by formation of RN_{3} and by its reaction with the acid formed. This is important since in many of the reported studies $\left[\mathrm{NaN}_{3}\right] \sim$ $[\mathrm{RCl}]$ and in most cases only $\left[\mathrm{RN}_{3}\right]_{\infty}$ values are measured.

Corrections for $\mathrm{N}_{3}{ }^{-}$consumption were introduced previously, but not systematically. Swain ${ }^{41}$ and RHHS ${ }^{11}$ took into account $\mathrm{N}_{3}{ }^{-}$consumption due to the reaction, while Sneen ${ }^{10}$ corrected also for $\mathrm{N}_{3}{ }^{-}$consumption by the formed acid. Sneen's values seem sometimes to be overcorrected: e.g., in the solvolysis of $\mathrm{PhCH}-$ (OPNB) $\mathrm{CH}=\mathrm{CHMe}^{32 \mathrm{a}}$ his value is 220^{10} while our calculated value is 140 . In this case $\left[\mathrm{N}_{3}-\right] /[\mathrm{RCl}]>9$ and the $\mathrm{p} \mathrm{K}_{\mathrm{a}}$'s of HN_{3} (4.68 in $\mathrm{H}_{2} \mathrm{O}$) ${ }^{52 \mathrm{a}}$ and of $4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COOH}\left(3.41\right.$ in $\mathrm{H}_{2} \mathrm{O}$) ${ }^{52 \mathrm{~b}}$ may be similar in the solvent used.

Temperature and Ionic Strength Effects on the Selectivity. The competitive capture of R^{+}by the ion N_{3}^{-}and the neutral $\mathrm{H}_{2} \mathrm{O}$ should be sensitive to the ionic strength (I). A change in I could also affect the selectivity by changing the relative concentration of the product-forming cationoid species. ${ }^{14}$ A temperature effect is expected if the E_{a} 's of the capture processes differ significantly.

Ingold et al. found that $E_{\mathrm{a}}\left(\mathrm{N}_{3}^{-}\right)-E_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{O}\right)=4 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$ for $\mathrm{Tol}_{2} \mathrm{CHCl}$ in 90% acetone, ${ }^{38 \mathrm{~b}}$ and Bunton et al. ${ }^{53}$ found $E_{\mathrm{a}}\left(\mathrm{N}_{3}{ }^{-}\right)$ $-E_{\mathrm{a}}(\mathrm{MeOH})=2-3 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$ for the reaction of camphene hydrochloride in $\mathrm{MeOH} / \mathrm{NaN}_{3}$, i.e., the selectivities increased with the temperature. Ingold ${ }^{38 b}$ developed an equation that calls for a strong decrease of the $k_{\mathrm{N}} / k_{\mathrm{W}}$ value at very low [$\mathrm{N}_{3}{ }^{-}$] on increasing I and depending on the dielectric constant ϵ. According to this equation the $k_{\mathrm{N}} / k_{\mathrm{W}}$ value at $0.05-0.2 \mathrm{M} \mathrm{NaN} 3$ in 90% acetone can be 2-3 times smaller than the value extrapolated to $I=0$. Indeed, Golomb ${ }^{39}$ found that the formation of RN_{3} from $\left(p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{CHCl}(\mathrm{X}=\mathrm{H}, \mathrm{Me})$ in 66.7-87.5\% acetone decreased 1.3-1.75 times on increasing I from 0.05 to 0.3 . However, Ingold et al. ${ }^{38 \mathrm{a}}$ did not find a strong effect of I on the $\alpha_{\mathrm{N}_{3}}$ for $\mathrm{Tol}_{2} \mathrm{CHCl}$, which was independent of ϵ in $50-90 \%$ acetone or of I at $0.05-0.2$ $\mathrm{M} \mathrm{NaN} \mathrm{N}_{3}$ in 50% acetone. Likewise, a similar selectivity was obtained for $\mathrm{Ph}_{2} \mathrm{CHBr}$ at $25^{\circ} \mathrm{C}$ and at $50^{\circ} \mathrm{C}$ in the same solvent at the same I value, ${ }^{41}$ and the $k_{\mathrm{N}} / k_{\mathrm{W}}$ value is the same for $\mathrm{Ph}_{2} \mathrm{CHCl}$ at $50^{\circ} \mathrm{C}$ and $I \sim 0.5$ and $\mathrm{Ph}_{2} \mathrm{CHBr}$ at $25^{\circ} \mathrm{C}$ and I $=0.04^{14}$ (Table II). Consequently, there is no experimental evidence for a strong effect of the temperature or I on the $k_{\mathrm{N}} / k_{\mathrm{W}}$ values, and the error introduced in the RS plots by the use of $k_{\mathrm{N}} / k_{\mathrm{W}}$ values measured at moderately different I or t^{0} values is small.

[^5]Solvent Effect. Increase in ϵ should decrease k_{N} more than $k_{\mathrm{W}}{ }^{54}$ and may change the relative distribution of the cationoid intermediates and hence the overall selectivity. The EtOH vs. $\mathrm{H}_{2} \mathrm{O}$ selectivities $\left(k_{\mathrm{E}} / k_{\mathrm{W}}\right)$ for $\mathrm{Ar}_{2} \mathrm{CHCl}$ change linearly with Y in $70-95 \%$ aqueous $\mathrm{EtOH},{ }^{9 \mathrm{f}}$ but they are solvent independent for exo-norbornyl and the 1 - and 2-adamantyl systems. ${ }^{9 \mathrm{~b}}$ However, the $k_{\mathrm{N}} / k_{\mathrm{W}}$ values for 1 -adamantyl bromide and 2 -adamantyl tosylate are higher at 75% dioxane than in 80% EtOH. ${ }^{11}$

In spite of the above prediction, both $\alpha_{N_{3}}$ and $\alpha_{\mathrm{C} 1}$ for the benzhydryl system are independent of the solvent composition in aqueous acetone. ${ }^{20.38}$ A change from aqueous acetone to aqueous dioxane at the same $\left[\mathrm{H}_{2} \mathrm{O}\right]$ reduced RN_{3} production from $\mathrm{Tol}_{2} \mathrm{CHCl}$ but enhanced it from $\mathrm{Ph}_{2} \mathrm{CHCl}^{39}$ (Table I). Swain ${ }^{41}$ obtained $k_{\mathrm{N}} / k_{\mathrm{W}}$ values for $\mathrm{Ph}_{3} \mathrm{CX}$ and $\mathrm{Ph}_{2} \mathrm{CHBr}$ that are independent of ϵ (Table I) as is the case for the $k_{\mathrm{Cl}} / k_{\mathrm{W}}$ values of $\mathrm{Ph}_{2} \mathrm{CCl}_{2}$ in aqueous acetone. ${ }^{216}$ In contrast, the dimensionless $k_{\mathrm{Br}} / k_{\mathrm{SOH}}$ ratios for the solvolysis of $\mathrm{AnC}(\mathrm{Br})=\mathrm{CMe}_{2}$ in TFE- $\mathrm{H}_{2} \mathrm{O}$ decreased on increasing [$\mathrm{H}_{2} \mathrm{O}$]. ${ }^{44}$ The small decrease of $k_{\mathrm{N}} / k_{\mathrm{W}}$ on increasing Y for $p-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CH}\left(\mathrm{CMe}_{3}\right) \mathrm{OMs}, \mathrm{X}=\mathrm{H}, \mathrm{Me}, t-\mathrm{Bu}$, Br , in aqueous acetone was ascribed to an $\mathrm{S}_{\mathrm{N}} 2$ process. ${ }^{55}$

In previous RS plots $k_{\mathrm{N}} / k_{\mathrm{W}}$ values in different solvent systems such as 60% dioxane, ${ }^{322} 67 \%$ aqueous diglyme, ${ }^{56}$ and $80 \% \mathrm{EtOH}^{11}$ were used. In Table III we mostly ignored possible differences in the values in various aqueous solvents, but solvent corrections were sometimes necessary. Compounds $\mathrm{ArCH}=\mathrm{CHCH}-$ (OPNB) $\mathrm{Me}(\mathrm{Ar}=p \text {-Tol, } \mathrm{Ph})^{32}$ and $\mathrm{An}_{2} \mathrm{CHOCOC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6^{50}$ were studied in $\mathrm{MeOH} / \mathrm{N}_{3}{ }^{-}$, and we obtained $k_{\mathrm{N}} / k_{\mathrm{W}}$ values by using the factor $k_{\mathrm{MeOH}}[\mathrm{MeOH}] / k_{\mathrm{W}}=93$, which we found for $\mathrm{PhCH}(\mathrm{OPNB}) \mathrm{CH}=\mathrm{CHMe} .{ }^{32 \mathrm{a}} \quad$ The $k_{\mathrm{N}} / k_{\mathrm{w}}$ for p $\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{OAc}^{57}$ was calculated from $k_{\mathrm{N}} / k_{\mathrm{EtOH}}$ by using $k_{\mathrm{E}} / k_{\mathrm{W}}=6$ as found for compound $\mathbf{1 2}$ of Table III. ${ }^{57}$ In calculating $k_{\mathrm{N}} / k_{\mathrm{W}}$ for compounds $\mathrm{ArCH}(\mathrm{X}) \mathrm{Me}$ from the given $k_{\mathrm{N}} / k_{\mathrm{SOH}^{-}}$ [SOH] values in 50% aqueous TFE, ${ }^{25 a}$ we used the appropriate $k_{\mathrm{W}} / k_{\text {TFE }}$ ratios. ${ }^{58 \mathrm{a}}$

Nucleofuge Effect. For a product formation from free ions the selectivity should be independent of the nucleofuge (leaving group). However, if ion pairs are involved in product formation, i.e., when $k_{\text {solv }}$ is low, ${ }^{26}$ the overall selectivity should reflect their distribution and selectivities that are nucleofuge dependent. ${ }^{59}$

For example, studies on optically active and oxygen-labeled $p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Ph})$ OPNB suggested that $\mathrm{N}_{3}-$ captures completely a solvent-separated ion pair. ${ }^{28 a}$ In contrast, $\mathrm{N}_{3}{ }^{-}$does not capture completely the intermediate(s) involved in the racemization of $p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Ph}) \mathrm{Cl} .{ }^{276}$ For the more reactive $\mathrm{Ph}_{2} \mathrm{CHX}$ system the selectivities are identical for $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}^{14,20}$ With the very reactive $\mathrm{Ph}_{3} \mathrm{CX}$ system the increase in the $k_{\mathrm{N}} / k_{\mathrm{w}}$ values in the order $\mathrm{X}=\mathrm{SCN}>\mathrm{F}>\mathrm{AcO}>\mathrm{Cl}>\mathrm{Br}$, was attributed to a local depletion of $\left[\mathrm{N}_{3}{ }^{-}\right]$near R^{+}and not to ion pairing. ${ }^{43}$ With esters as nucleofuges, $\mathrm{N}_{3}{ }^{-}$may give acyl oxygen cleavage by attack on

[^6]Table III. Solvolysis Rates and $k_{\mathrm{N}} / k_{\mathrm{W}}$ Values for Alkyl Chlorides (RCl) in 80% Acetone at $25^{\circ} \mathrm{C}$

no.	substrate	$k_{\text {solv }}, \mathrm{s}^{-1}$	$k_{\mathrm{N}} / k_{\mathrm{W}}$	$\log k_{\text {solv }}$	$\log \left(k_{\mathbf{N}} / k_{\mathrm{W}}\right)$
1	$p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}{ }^{+}$	$5.7 \times 10^{7 a}$	2.04×10^{7} b,90	7.75	7.31
2	$(p-\mathrm{An})_{3} \mathrm{CCl}$	$1.05 \times 10^{7 a}$	$2.3 \times 10^{719} \mathrm{c}$	7.02	7.36
3	$p-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{Cl}$	$3.85 \times 10^{3} \mathrm{c}$	$\begin{aligned} & 7.3 \times 10^{7 d, 58 b} \\ & 1.0 \times 10^{7 e} \end{aligned}$	3.59	7.87, 7.0
4	$p-\mathrm{An}_{2} \mathrm{CHCl}$	214^{f}	$(0.9-1.7) \times 10^{5 g}$	2.33	5.0-5.2
5	$\mathrm{Ph}_{3} \mathrm{CCl}$	$21.9{ }^{\text {h,62 }}$	$\begin{aligned} & 11200, i 44800^{j} \\ & 10^{s, k} 3.1 \times 10^{s l} \end{aligned}$	1.34	$\begin{gathered} 4.05,4.65 \\ 5,5.49 \end{gathered}$
6	$\mathrm{PhCH}(\mathrm{Cl}) \mathrm{CH}=\mathrm{CHCH}_{3}$	0.12-2.0 $0^{m, n}$	140°	-0.92 to -0.30	2.15
7	$p-\mathrm{AnCH}(\mathrm{Me}) \mathrm{Cl}$	6.54×10^{-260}	$243,{ }^{p} 3300^{d}$	-1.18	2.40, 3.52
8	$p-\mathrm{Tol}_{2} \mathrm{CHCl}$	$2.2 \times 10^{-2} \mathrm{q}$	$\begin{gathered} 227-12000^{r} \\ 400-1110^{s} \end{gathered}$	-1.65	2.36-3.08, 2.3-2.75
9	$p-\mathrm{TolCH}=\mathrm{CHCH}(\mathrm{Me}) \mathrm{Cl}$	$(2.5-41) \times 10^{-3 \mathrm{~m}}$	670 ± 100^{t}	-2.6 to -1.4	2.83 ± 0.06
10	6-(chloromethyl) benzo[a] pyrene	9.4×10^{-322}	$4.0 \times 10^{4} u$	-2.03	4.60
11	$p-\mathrm{CH}_{3} \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{Cl}$	3.37×10^{-360}	$3600^{\text {d }}$	-2.47	3.56
12	3-benzothieny1- $\mathrm{CH}(\mathrm{Me}) \mathrm{Cl}$	$1.89 \times 10^{-3} v$	$950^{\text {w }}$	-2.72	2.98
13	$p-\mathrm{TolCH}(\mathrm{Ph}) \mathrm{Cl}$	1.57×10^{-363}	188^{x}	-2.80	2.27
14	$p-\mathrm{PhOC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{Cl}$	1.15×10^{-364}	$510^{\text {d }}$	-2.94	2.71
15	$\mathrm{PhCH}=\mathrm{CHCH}(\mathrm{Me}) \mathrm{Cl}$	$(3.5-59) \times 10^{-4} \mathrm{~m}$	75^{y}	-3.5 to -2.2	1.88
16	$p-t-\mathrm{BuC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Ph}) \mathrm{Cl}$	$7.6 \times 10^{-4} \mathrm{z}$	$74^{a a}$	-3.12	1.87
17	9-(chloromethyl)anthracene	$2.96 \times 10^{-4} 22$	$4.5 \times 10^{4} a b$	-3.53	4.65
18	$1-\mathrm{Me}-\mathrm{c}-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{Cl}$	$7.8 \times 10^{-5} a c$	$24^{a d}$	-4.11	1.38
19	$\mathrm{Ph}_{2} \mathrm{CHCl}$	7.27×10^{-565}	$\begin{aligned} & 50,^{42} 56,{ }^{a e} \\ & 100, f^{a f} 180^{a g} \end{aligned}$	-4.14	$\begin{array}{r} 1.7,1.75 \\ 2.0,2.26 \end{array}$
20	$p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Cl}$	$5.7 \times 10^{-5 a h . a j}$	$14.9{ }^{\text {ai,aj }}$	-4.24	1.17
21	p - $\mathrm{TolCH}(\mathrm{Me}) \mathrm{Cl}$	3.47×10^{-564}	$52^{\text {d }}$	-4.46	1.72
22	$p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Ph}) \mathrm{Cl}$	$2.31 \times 10^{-5} \mathrm{ak}, 27 \mathrm{~b}$	$280^{\text {al }}$	-4.64	2.45
23	2-Me-2-adamantyl-Cl	$(3.7-29) \times 10^{-6} \mathrm{am}$	$3.3{ }^{\text {an }}$	-5.4 to -4.5	0.52
24	$p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{Cl}$	$2.43 \times 10^{-6} \mathrm{c}$	$44^{\text {d }}$	-5.61	1.65
25	$\mathrm{Me}_{3} \mathrm{CCl}$	$1.97 \times 10^{-634 a}$	$12^{a o}$	-5.71	1.08
26	1-Me-c-C $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Cl}$	$1.11 \times 10^{-6} a p$	$12^{a q}{ }^{\text {ai,aj }}$	-5.95	1.08
27 28	$p-\mathrm{PhOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Cl}$	$4.06 \times 10^{-7} a j . a r$ 3.82×10^{-769}	$415^{a i, a j}$	-6.39	2.62
28	$m-\mathrm{AnCH}(\mathrm{Me}) \mathrm{Cl}$	$3.82 \times 10^{-7} 69$	$64^{\text {d }}$	-6.41	1.81
29 30	1-Me-c-C ${ }_{4} \mathrm{H}_{6} \mathrm{Cl}$	$1.15 \times 10^{-7} \mathrm{ap}$	$15^{\text {aq }}$	-6.94	1.18
30 31	p-TolCH $\left(\mathrm{CMe}_{3}\right) \mathrm{Cl}$ p - t - $\mathrm{BuC} \mathrm{H}_{4} \mathrm{CH}(\mathrm{CMe}) \mathrm{Cl}$	1.06×10^{-777} 6.11×10^{-877}	8.8 $11.3^{\text {as }}$	-6.97 -7.21	0.94
31 32	$p-t-\mathrm{BuC}_{6} \mathrm{H}_{4} \mathrm{CH}\left(\mathrm{CMe}_{3}\right) \mathrm{Cl}$ $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Cl}$	6.11×10^{-877} $4.81 \times 10^{-8} \mathrm{ap}$	11.3 $31^{a q}$	-7.21 -7.32	1.05 1.49
33	exo-norbornyl-Cl	$7 \times 10^{-9} a p$	$11^{\text {at }}$	-8.15	1.04
34	$m-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{Cl}$	6.4×10^{-960}	$335^{\text {d }}$	-8.19	2.53
35	$\mathrm{PhCH}\left(\mathrm{CMe}_{3}\right) \mathrm{Cl}$	$2.8 \times 10^{-9} 77$	$14.4{ }^{\text {as }}$	-8.55	1.16
36	${\mathrm{c}-\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{Cl}}$	$1.81 \times 10^{-9} \mathrm{ap}$	$28^{a q}$	-8.74	1.45
37	$p-\mathrm{AnCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Cl}$	$1.73 \times 10^{-9} \mathrm{au}$	$348{ }^{33}$	-8.76	2.54
38	$\mathrm{CH}_{3} \mathrm{CH}(p-\mathrm{An}) \mathrm{CH}_{2} \mathrm{Cl}$	$7.8 \times 10^{-10} \mathrm{au}$	$348^{a v}$	-9.11	2.54
39	1-adamantyl-Cl	$1.2 \times 10^{-9} \mathrm{aw}$	$9-20^{a x}$	-8.92	0.95-1.30
40	$\mathrm{Me}_{2} \mathrm{CHCl}$	$1.05 \times 10^{-9} a y, 33$	$740^{\text {ay }}{ }^{33}$	-8.98	2.87
41 42	$n-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{CH}(\mathrm{Me}) \mathrm{Cl}$	$9.56 \times 10^{-10 a y, 33}$ $5 \times 10^{-10} a z$	$770^{a y, 33}$ $<6 \mathrm{ba}$	-9.02	2.89 <0.78
42 43	${\mathrm{c}-\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{Cl}}_{\mathrm{p}-\mathrm{BrC}}^{4} \mathrm{CH}\left(\mathrm{CMe}_{3}\right) \mathrm{Cl}$		$<6^{\text {ba }}$	-9.3	<0.78
43 44	$p-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH}\left(\mathrm{CMe}_{3}\right) \mathrm{Cl}$	$4.6 \times 10^{-10} b b$	$39.2^{\text {as }}$	-9.34	1.59
44 45	$p-\mathrm{TolCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Cl}$ $\mathrm{CH}_{3} \mathrm{CH}(p-\mathrm{Tol}) \mathrm{CH} \mathrm{Cl}^{\text {Cl }}$	$2.6 \times 10^{-10} \mathrm{au}$	61^{33}	-9.59	1.79
45	$\mathrm{CH}_{3} \mathrm{CH}(p-\mathrm{Tol}) \mathrm{CH}_{2} \mathrm{Cl}$	$7 \times 10^{-11} a u$	$61^{\text {av }}$ d	-10.15	1.79
46	$p-\mathrm{NCC}_{6} \mathrm{H}_{4} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Cl}$	$2.79 \times 10^{-10} \mathrm{c}$	1730^{d}	-9.55	3.24
47	$p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Cl}$	$6.15 \times 10^{-11} \mathrm{c}$	$5300^{\text {d }}$	-10.21	3.73
48 49	$\mathrm{PhCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Cl}$	$6.8 \times 10^{-11 a u}$ $1.47 \times 10^{-11 a u}$	148^{33} $148^{a v}$	-10.17 -10.83	2.17 2.17
49 50	$\mathrm{CH}_{3} \mathrm{CH}(\mathrm{Ph}) \mathrm{CH}_{2} \mathrm{Cl}$ endo-norbornyl-Cl	$1.47 \times 10^{-11 ~}{ }^{\text {a }}$ $2 \times 10^{-11} \mathrm{bc}$	$148^{\text {at }}$	-10.83	2.17 1.59
51	$\mathrm{CH}_{3} \mathrm{CH}(p-\mathrm{An}) \mathrm{CH}_{2} \mathrm{Cl}$	$2.34 \times 10^{-12} b d, 33$	$7400{ }^{\text {be, } 33}$	-11.63	3.87
52	$\mathrm{CH}_{3} \mathrm{CH}(p-\mathrm{Tol}) \mathrm{CH}_{2} \mathrm{Cl}$	$2.17 \times 10^{-12} b d, 33$	$1870{ }^{\text {be,33 }}$	-11.66	3.27
53	$\mathrm{CH}_{3} \mathrm{CH}(\mathrm{Ph}) \mathrm{CH}_{2} \mathrm{Cl}$	$1.99 \times 10^{-12} \mathrm{bd} .33$	$4500{ }^{\text {be, } 33}$	-11.70	3.65
54	2-adamantyl-Cl	$5.3 \times 10^{-13} \mathrm{ap}$	6.6,bf $16-32^{\text {bg }}$	-12.28	0.82, 1.2-1.51

${ }^{a}$ For calculation see text. ${ }^{b}$ A lower limit since reaction with $\mathrm{N}_{3}{ }^{-}$may not be rate determining. ${ }^{c}$ Calculated by using the equation log $\left(k / k_{\mathrm{o}}\right)=-4.953\left(\sigma_{\mathrm{p}}{ }^{0}+1.147\left(\sigma_{\mathrm{p}}{ }^{+}-\sigma_{\mathrm{p}}{ }^{\circ}\right)\right)$ at $45^{\circ} \mathrm{C}$ and corrected to $25^{\circ} \mathrm{C}$ by multiplying by $1.04 .{ }^{60}{ }^{d}$ Calculated from the $k_{\mathrm{N}} / k_{\mathrm{SOH}}[\mathrm{SOH}]$ values of ref 25 a (see text). $I=0.5$ at room temperature; nucleofuges, $3,5-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~S}^{-}$for compound $3, \mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{COO}^{-}$for compounds 7,11 , and 14 , and Cl for compounds $21,24,28,34,46$, and 47 . estimated lower limit from the solvolysis of $p-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CHMeOAc}$ in $\mathrm{EtOH} /$ $0.002 \mathrm{M} \mathrm{NaN}_{3}$ that produces no acid up to $90 \% \mathrm{~N}_{3}{ }^{-}$consumption, ${ }^{57}$ assuming that 5% acid could have been detected and corrected for the different solvent. f^{\prime} Calculated from data at $0^{\circ} \mathrm{C}$ in 85% acetone. ${ }^{61}$ Temperature and solvent corrections were introduced by comparing the ρ^{+}values for compounds $13,16,19$, and 22 in 85% ace tone at $0^{\circ} \mathrm{C}$ and in 80% acetone at $25{ }^{\circ} \mathrm{C} .{ }^{20,27 \mathrm{~b}, 61,63,65}$ The previously reported
 $\mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6$ in $\mathrm{MeOH},{ }^{50}$ assuming that $k_{\mathrm{MeOH}}[\mathrm{MeOH}] / k_{\mathrm{W}}=93$ as found for compound 6 . $h_{\mathrm{A}}{ }_{\mathrm{A}}$ directly measured value in a flow system. The previously quoted $k_{\text {solv }}$ value is $8.8(8.9) \mathrm{s}^{-1} 2 \mathrm{a}, 11,22$ (see text). ${ }^{i}$ Calculated from $\alpha_{N_{3}}$ for $\mathrm{Ph}_{3} \mathrm{CCl}$ in ref 43 . The previously reported value of 1000^{11} is $\alpha_{N_{3}}=k_{N} / k_{W}\left[\mathrm{H}_{2} \mathrm{O}\right]$. ' Calculated for $\mathrm{Ph}_{3} \mathrm{COAc}^{43}{ }^{k}$ An average value for $\mathrm{Ph}_{3} \mathrm{CCl}$ from ref 41 . ${ }^{l} \mathrm{For} \mathrm{Ph}_{3} \mathrm{CSCN} .{ }^{41}$ ${ }^{m}$ From the data for ROPNB in $60-80 \%$ dioxane ${ }^{28 \mathrm{~b}}$ and using $k_{\mathrm{Cl}} / k_{\text {OPNB }}$ ratios of 2.6×10^{4} and 4.4×10^{5} (see text). $n k=k_{\text {solv }}+$ $k_{\text {rearrangement }}{ }^{28 \mathrm{~b}}{ }^{\circ}$ Calculated average value from data for ROPNB in 60% dioxane $/ 0.15-0.45 \mathrm{M} \mathrm{NaN}_{3} .^{32 \mathrm{a}}{ }^{p}$ Calculated for ROPNB in 90% acetone $/ 0.03-0.106 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NN}_{3}$ at $78.6^{\circ} \mathrm{C}^{47}$ (cf. Table II and text). A value of 470 in 50% acetone at $25^{\circ} \mathrm{C}, I=0.5$ was recently found (Jencks, W. P., personal communication). ${ }^{a}$ Calculated from ref 20 , assuming that $E_{a}=17 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$, a value extrapolated from systems 13 and $19 .{ }^{63}{ }^{r}$ In $50-90 \%$ acetone 38 (Table I). The reported values were 180^{11} and 875^{10} (see text). ${ }^{s}$ In $50-87 \%$ acetone ${ }^{39}$ (Table I). ${ }^{t}$ From data in MeOH (see text). ${ }^{u}$ An average value (see Table I). ${ }^{v}$ Calculated from $k_{\text {solv }}$ of compound 14, ${ }^{64}$ assuming that [$k_{\text {solv }}(12-\mathrm{OAc}) /$ $\left.k_{\text {solv }}(14-\mathrm{OAc})\right](30 \% \mathrm{EtOH})^{57}=\left[k_{\text {solv }}(12-\mathrm{Cl}) / k_{\text {solv }}(14-\mathrm{Cl}](80 \% \text { acetone }) \text {. } w \text { Calculated from [ROH }\right]_{\infty}$ and [RN $\left.\mathrm{R}_{3}\right]_{\infty}$ in the reaction of ROAc in $30 \% \mathrm{EtOH} / 0.035 \mathrm{M} \mathrm{NaN}_{3}$ at $75{ }^{\circ} \mathrm{C}^{57}{ }^{x}$ Calculated from data for ROPNB in 90% acetone $/ 0.030-0.065 \mathrm{M} \mathrm{NaN}_{3}$ at $99.5{ }^{\circ} \mathrm{C} .{ }^{46} \quad{ }^{y} \mathrm{Calculat-}$

Footnotes to Table III (Continued)

ed from data for $\mathrm{ROOC}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}-2,6$ in $\mathrm{MeOH} .{ }^{32 \mathrm{~b}}$ For solvent extrapolation see text. ${ }^{z}$ An average value from ref 20. The reported value ${ }^{11}$ is $4.77 \times 10^{-4} \mathrm{~s}^{-1}$ from ref 66 in the presence of 0.1 M NaCl . aa Calculated from the initial $\left[\mathrm{RN}_{3}\right] /[\mathrm{ROH}]$ ratio in 90% acetone at $50{ }^{\circ} \mathrm{C}$. ${ }^{66}$ $a b$ Determined by an indirect kinetic method in 50% acetone $/ 0.0005-0.003 \mathrm{M} \mathrm{NaN}_{3} .{ }^{22}$ ac Calculated from $k_{\text {solv }}=3.67 \times 10^{-4} \mathrm{~s}^{-1}$ in 80% EtOH at $25^{\circ} \mathrm{C}^{67}$ assuming $m=1$. ad In 67% aqueous diglyme. ${ }^{14}$ ae From ref 20 (see Table I). Previously quoted values are 34^{11} and $61 .{ }^{10}$ ${ }^{\text {af }}$ Average value from ref 14 and 39 (Table I). ag Average value for $\mathrm{Ph}_{2} \mathrm{CHBr}^{41}$ (Table I). ah Based on $k_{\text {solv }}$ at $20^{\circ} \mathrm{C}^{68}$ using $E_{\mathrm{a}}=21$ $\mathrm{kcal} \cdot \mathrm{mol}^{-1}$ as for $\mathrm{Ph}_{2} \mathrm{CHCl} .^{63}$ ai Value from ref 69 . The reaction with $\mathrm{N}_{3}{ }^{-}$is probably $\mathrm{S}_{\mathrm{N}} 2 .{ }^{68,70}$ aj Values for compounds 20 and 27 were erroneously exchanged in ref 69 and 70 . The correct assignment is given in ref 68 and 71 . ${ }^{a k}$ The polarimetric rate constant k_{α} is 6×10^{-5} s^{-1}. al Calculated from data for $p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OPNB}) \mathrm{Ph}$ with $0.14 \mathrm{M} \mathrm{NaN}_{3}$ at $100^{\circ} \mathrm{C}$ and corrected for the acyl oxygen cleavage by the $\mathrm{N}_{3}{ }^{-}$ (see text). ${ }^{a m}$ (i) By using $k_{\text {solv }}$ for ROPNB ${ }^{72}$ and $k_{\mathrm{Cl}} / k_{\mathrm{OPNB}}=2.6 \times 10^{4}{ }^{34} k_{\text {solv }}=3.7 \times 10^{-6} \mathrm{~s}^{-1}$; (ii) by using $k_{\text {solv }}$ for 2-adamantyl-Cl and a $k_{\mathrm{Me}} / k_{\mathrm{H}}$ ratio of $10^{7}{ }^{74}$ (interpolated from ratios in $80 \% \mathrm{EtOH}$ and AcOH), ${ }^{3} k_{\text {solv }}=29 \times 10^{-6} \mathrm{~s}^{-1}$; (iii) from $k_{\text {solv }}=1.05 \times 10^{-2} \mathrm{~s}^{-1}$ for 2 -methyl-2-adamantyl-Cl in $80 \% \mathrm{EtOH}$ at $70^{\circ} \mathrm{C}$ and $\Delta H^{\neq}=22.3 \mathrm{kcal} \cdot \mathrm{mol}^{-1}{ }^{74}$ assuming that $m=1.0, k_{\text {solv }}=14 \times 10^{-8} \mathrm{~s}^{-1}$. an In 70% acetone. ${ }^{14}{ }^{a o}$ For t-BuBr. For previous values see text. ${ }^{a p}$ Calculated in ref 11 . ${ }^{a q}$ For ROMS in 67% diglyme $-0.5 \mathrm{M} \mathrm{NaN}_{3}$ at $40^{\circ} \mathrm{C}^{56}$ ${ }^{\text {ar }}$ Calculated from $k_{\text {solv }}=1.63 \times 10^{-6} \mathrm{~s}^{-1}$ in 70% acetone at $20^{\circ} \mathrm{C},{ }^{68}$ using $m=1.08$ as for compound $20,{ }^{68}$ and an $E_{\mathrm{a}}=21 \mathrm{kcal} \mathrm{mol}^{-1}$ as for $\mathrm{Ph}_{2} \mathrm{CHCl}^{63}$ as Data for ROMs at $35^{\circ} \mathrm{C}$ in 80% acetone. The $k_{\mathrm{N}} / k_{\mathrm{W}}$ values at $7^{\circ} \mathrm{C}$ for compounds 30 and 31 are 9.4 and 12 , respectively. The reaction with $\mathrm{N}_{3}{ }^{-}$was defined as $\mathrm{S}_{\mathrm{N}} 2$. ${ }^{\text {s5 }}$ at Value for ROTs ${ }^{78}$ at unspecified solvent and temperature. ${ }^{a u} k_{\text {solv }}=k_{\Delta}$ for the formation of the phenonium ion, calculated from ref 33 and assuming that $k_{\Delta} / k_{\mathrm{S}}$ ($\mathrm{RCl}, 80 \%$ acetone) $=k_{\Delta} / k_{\mathrm{s}}$ ($\mathrm{ROTs}, 80 \% \mathrm{EtOH}$). av Values measured for the isomeric system that gives the same carbenium ion. aw Estimated in ref 79 from data in aqueous EtOH and aqueous acetone. $a x$ Data for the bromide in 75% dioxane. Previously reported value is 2.5^{11} (see text). ay Reaction with water follows the k_{s} route. Reaction with $\mathrm{N}_{3}{ }^{-}$is $\mathrm{S}_{\mathrm{N}} 2 . .^{9 \mathrm{e},{ }^{33} \quad a z}$ Estimated from $k_{\text {solv }}=3.19 \times 10^{-5} \mathrm{~s}^{-1}$ in $80 \% \mathrm{EtOH}$ for the 1 -methyl derivative, ${ }^{80}$ using $k_{\mathrm{Me}} / k_{\mathrm{H}}$ ratio of 25000 (average of the ratio for $\mathrm{c}-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{OTs}$ in $80 \% \mathrm{EtOH}$ at $85^{\circ} \mathrm{C}$ and $\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl}$ in $50 \% \mathrm{EtOH}$ at $95^{\circ} \mathrm{C}$) ${ }^{81}$ and $m=0.67$ as for ROTs in aqueous $\mathrm{EtOH}^{82} \quad{ }^{8 a}$ Based on the formation of $<1 \% \mathrm{RN}_{3}$ from cyclooctyl-OTs in $70 \% \mathrm{EtOH} / 0.04 \mathrm{M} \mathrm{NaN}_{3}{ }^{82}$ and on $k_{\mathrm{E}} / k_{\mathrm{W}}=0.62$ for $\mathrm{c}_{-} \mathrm{C}_{8} \mathrm{H}_{15} \mathrm{OBs}^{83} \quad{ }^{\mathrm{bb}}$ Calculated from data for ROMs using a $k_{\mathrm{OMs}} / k_{\mathrm{C} 1}$ ratio of 4200 (average value for systems 30,31 , and 35). ${ }^{71}$ bc Calculated by using $k_{\text {exo }} / k_{\text {endo }} \sim 400$ in 80% acetone (based on extrapolated data from ref 84). ${ }^{b d} k_{\text {solv }}=k_{\mathrm{s}}$. be For ROTs in 80% EtOH. The reaction with $\mathrm{N}_{3}{ }^{-}$is probably $\mathrm{S}_{\mathrm{N}} 2 .{ }^{33}$ bf Value for ROTs in 70% acetone. ${ }^{14}$ bg Calculated for ROTs from data in 75% dioxane ${ }^{11}$ (cf. Table II). For the previously reported value, see text.
the carbonyl group. Hydrolysis of the acyl azide formed will increase k_{W} and reduce the calculated $k_{\mathrm{N}} / k_{\mathrm{W}}$ value, as indeed happened for $p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Ph})$ OPNB. ${ }^{28 \mathrm{Na}}$

Unfortunately, the literature $k_{\mathrm{N}} / k_{\mathrm{w}}$ values were mostly determined with a single nucleofuge, which was chloride only in the minority of the cases. This should affect the quality of the RS plot.

Extended $\log \boldsymbol{k}_{\text {solv }}$ vs. $\boldsymbol{k}_{\mathrm{N}} / \boldsymbol{k}_{\mathrm{W}}$ Table. Differences from Previous Tables. Table III gives $\log k_{\text {solv }}$ and $k_{\mathrm{N}} / k_{\mathrm{W}}$ values for 54 compounds. The data are plotted in Figure 1. Several differences distinguish Table III from Sneen's ${ }^{10}$ and RHHS' ${ }^{11}$ tables.

It is much more extensive since Sneen ${ }^{10}$ used 7 compounds, RHHS used 16 compounds ${ }^{11}$ in their correlations, and we introduced all the relevant new data known to us. Especially important are Richard and Jencks' recent data on $\operatorname{ArCH}(\mathrm{X}) \mathrm{Me}$ derivatives of wide structural range ${ }^{25}$ where the $\mathrm{S}_{\mathrm{N}} 1-\mathrm{S}_{\mathrm{N}} 2$ borders are sharply defined by the kinetics. We also included two stable ions in order to evaluate the shape of the line in Ritchie's region and β-arylalkyl systems that react via the k_{Δ} route. ${ }^{33}$ For defining the $\mathrm{S}_{\mathrm{N}} 2$ region we included $\mathrm{ArCH}(\mathrm{Cl}) \mathrm{Me}$ derivatives with elec-tron-withdrawing aryl groups, ${ }^{25 b}$ benzyl derivatives, $\mathrm{ArCHMeCH} \mathrm{H}_{2} \mathrm{OTs}, i-\mathrm{PrCl}$, and $2-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{Cl}$, which probably react via $\mathrm{S}_{\mathrm{N}} 2$ with $\mathrm{N}_{3}{ }^{-}$and via the k_{s} route with water. ${ }^{25 \mathrm{~b} .33 .68 .70} \mathrm{We}$ checked all the literature data and the assumptions involved in the calculation of the $k_{\text {solv }}$ and $k_{\mathrm{N}} / k_{\mathrm{W}}$ values, and the data were mostly recalculated. Although it is not meant as a criticism ${ }^{86}$ the reasons for the discrepancy between previous and present values are of interest. They are discussed above and in footnotes to Table III, and a few typical cases are analyzed briefly below.

Two compounds from the RHHS plot ${ }^{11}$ were omitted: γ -methyl- α - p-tolylallyl chloride, where the selectivity of the allylic isomer was measured, and α, α-dimethylallyl chloride, for which added NaN_{3} appreciably increased $k_{\text {sodv }}$; the $k_{\mathrm{N}} / k_{\mathrm{W}}$ values decrease from 325 at $0.04 \mathrm{~N} \mathrm{NaN}_{3}$ to 80 at $0.5 \mathrm{M} \mathrm{NaN}_{3}{ }^{32 \mathrm{~b}}$ and the reaction with $\mathrm{N}_{3}{ }^{-}$is complex. ${ }^{326}$
(68) Graczyk, D. G.; Taylor, J. W.; Turnquist, C. R. J. Am. Chem. Soc. 1978, 100, 733
(69) Kohnstam, G.; Queen, A.; Riber, T. Chem. Ind. (London) 1962, 1287.
(70) Thornton. E. R. "Solvolysis Mechanisms": Ronald Press: New York, 1964; pp 86-88.
(71) Kohnstam, G.; Queen, A.; Reid, D. J. Chem. Commun. 1971, 797.
(72) Fry, J. L.; Engler, E. M.; Schleyer, P. v. R. J. Am. Chem. Soc. 1972. 94, 4628.
(73) Fry, J. L.; Harris, J. M.; Bingham, R. C.; Schleyer, P. v. R. J. Am. Chem. Soc. 1970, 92, 2540.
(74) Slutsky, J.; Bingham, R. C.; Schleyer, P. v. R.; Dickason, W. C.: Brown, H. C. J. Am. Chem. Soc. 1974, 96.1969.
$\mathrm{Ph}_{3} \mathrm{CCl}$ was the most reactive compound on the previous RS plots, and its position largely determined their shape near the intersection with Ritchie's region. The previous $k_{\text {solv }}{ }^{22}, 11,22$ was extrapolated from 85% acetone at -34 and $-14^{\circ} \mathrm{C}$ but we used instead a directly measured value in 80% acetone at $25^{\circ} \mathrm{C}$. ${ }^{62}$ RHHS's $k_{\mathrm{N}} / k_{\mathrm{W}}$ value of 1000^{11} is apparently Hill's α_{N} value ${ }^{43}$ and should be multiplied by 11.2 , the water concentration in 80% acetone. We discussed above the problems that led to multiplicity of $k_{\mathrm{N}} / k_{\mathrm{W}}$ values for $\mathrm{Ph}_{3} \mathrm{C}^{+}$. In the absence of an objective judgement as to the best value, we included all of them in Table III and drew a line in Figure 1.

The previously reported $k_{\text {solv }}=0.134 \mathrm{~s}^{-1}$ for the γ-methyl- α phenylallyl system is based on $k_{\text {solv }}$ for the p-nitrobenzoate ${ }^{286}$ and a $k_{\mathrm{Cl}} / k_{\mathrm{OPNB}}$ of 3×10^{4}. For $\mathrm{PhCH}(\mathrm{Cl}) \mathrm{CH}=\mathrm{CHMe}$ Sneen gave the relative ratio $k_{\text {solv }}(\mathrm{RCl}) / k_{\text {solv }}(t-\mathrm{BuCl})=940$ at $0^{\circ} \mathrm{C} .{ }^{10}$ However, if $E_{\mathrm{a}}=21.6 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$ in 80% acetone as in 70% dioxane ${ }^{28 \mathrm{~b}}$ and $k_{\mathrm{Cl}} / k_{\text {OPNB }}=8.3 \times 10^{4}$ in 80% acetone at $0^{\circ} \mathrm{C},{ }^{34}$ we can calculate $k_{\text {solv }}(\mathrm{RCl}) / k_{\text {solv }}(t-\mathrm{BuCl})$ ratio of 306000 . We cannot account for the difference unless $k_{\text {solv }}$ for the ~ 300 times slower isomer, $\mathrm{PhCH}=\mathrm{CHCH}(\mathrm{OPNB}) \mathrm{Me}$, was mistakenly used.

Our $k_{\mathrm{N}} / k_{\mathrm{W}}$ values for $\mathrm{Tol}_{2} \mathrm{CHCl}$ differ from earlier values: First, since the $\left[\mathrm{RN}_{3}\right]_{\infty} /[\mathrm{ROH}]_{\infty}$ ratios are $\left[\mathrm{H}_{2} \mathrm{O}\right]$ independent, ${ }^{38 \mathrm{a}}$ we gave a range of $k_{\mathrm{N}} / k_{\mathrm{w}}$ values covering all the solvent compositions, while Sneen 10 used only the data at 50% acetone. Second, the RHHS value is the only one that was massively corrected for the ionic strength and temperature effect, ${ }^{38 \mathrm{~b}}$ but we see no necessity for such a correction. Third, the $\left[\mathrm{H}_{2} \mathrm{O}\right]$ term of 5.5 M in 90% acetone was apparently previously forgotten. ${ }^{11}$

For $p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OPNB}) \mathrm{Ph}^{87}$ a $k_{\mathrm{N}} / k_{\mathrm{W}}$ value of 56 was calculated by RHHS. ${ }^{11}$ However, the percent RN $_{3}$ was calculated from the difference between the calculated and observed titratable acid at 100% reaction, and since 82% of the acid arises from acyl oxygen cleavage of the ester, ${ }^{28 a}$ the $k_{\mathrm{N}} / k_{\mathrm{W}}$ value corrected for this and for N_{3}^{-}consumption is 280 .

All the selectivity values for $t-\mathrm{BuCl}$ are based on Ingold's data for $t-\mathrm{BuBr}$ in 90% acetone. ${ }^{75}$ From the given percentages of the total reaction and the acid formed, ${ }^{75}$ we calculated a time-averaged $k_{\mathrm{N}} / k_{\mathrm{W}}$ value of 7 ± 1. However, the solvolysis of $t-\mathrm{BuBr}$ in 90% acetone is accompanied by 38% acid-generating elimination. ${ }^{76}$
(75) Bateman. L. C.; Hughes, E. D.: Ingold, C. K. J. Chem. Soc. 1940, 960.
(76) Church, M. D.; Hughes, E. D. J. Chem. Soc. 1940, 913.
(77) Nair. M. R.; Nair, S. V. Indian J. Chem., Sect. B 1980. 19B, 1091.
(78) Harris, J. M.; Mount, D. L.; Raber, D. J. J. Am. Chem. Soc. 1978. 100, 3139 .
(79) Bentley. T. W.; Carter. G. E. J. Am. Chem. Soc. 1982, 104, 5741.
(80) Brown, H. C.,' Borkowski, M. J. Am. Chem. Soc. 1952. 74, 1894.

Correcting for this we obtained $k_{\mathrm{N}} / k_{\mathrm{W}}=12$. The values reported by Sneen (14.5), ${ }^{10}$ RHHS (74), ${ }^{11}$ and Swain (3.9) ${ }^{41}$ suggest that Swain used only the $\left[\mathrm{RN}_{3}\right]_{\infty}$ value, that Sneen overcorrected for the $\mathrm{N}_{3}{ }^{-}$consumption by the acid, and that the RHHS value reflects a typographical error. ${ }^{88}$

For the 1 -adamantyl system the RHHS value of 2.5 is apparently based on data for the bromide in $80 \% \mathrm{EtOH}$ at $75^{\circ} \mathrm{C} .{ }^{11}$ However, the value is $\left[\mathrm{NaN}{ }_{3}\right.$] dependent (Table II); both ROH and ROEt are formed, and the very low percentage of RN_{3} ($0.4-0.6 \%$) results in a large error in $k_{\mathrm{N}} / k_{\mathrm{W}}$. Our calculated $k_{\mathrm{N}} / k_{\mathrm{W}}$ value (Table III) is at $100^{\circ} \mathrm{C}$ in 75% aqueous dioxane, a solvent more similar to aqueous acetone, which gives only ROH and RN_{3} and a higher ($6-8 \%$) $\left[\mathrm{RN}_{3}\right]$ value. ${ }^{11}$ A range of values is given since the values are $\left[\mathrm{NaN}_{3}\right]$ dependent. The RHHS value of 1.7 for the 2 -adamantyl system is in $80 \% \mathrm{EtOH}$ where $\% \mathrm{RN}_{3}$ $=0.4$ at $0.04 \mathrm{M} \mathrm{NaN}_{3}{ }^{11}$ (Table II). The different $k_{\mathrm{N}} / k_{\mathrm{W}}$ values for the 1-and 2-adamantyl systems reflect the $k_{\mathrm{E}} / k_{\mathrm{W}}$ values of 0.40 for 2 -adamantyl tosylate and 1.05 for 1 -adamantyl bromide. We calculated $k_{\mathrm{N}} / k_{\mathrm{W}}$ values of $32\left(0.06 \mathrm{M} \mathrm{NaN}_{3}\right)$ and $16(0.1$ M NaN 3) in 75% dioxane at $75^{\circ} \mathrm{C}$ where $\% \mathrm{RN}_{3}=10-12 \%$. However, the preferred value is 6.6 ± 0.5, measured for 2 adamantyl tosylate in 70% acetone $/ 0.5 \mathrm{M} \mathrm{NaN}_{3}$ at $77{ }^{\circ} \mathrm{C}^{14}$ after the RHHS publication.

Two points in Ritchie's region were added to Table III, and the $k_{\text {solv }}$ values for the chloro precursors had to be estimated. From $\log k_{\text {solv }}\left(40 \% \mathrm{EtOH}-60 \% \mathrm{Et}_{2} \mathrm{O}, 25{ }^{\circ} \mathrm{C}\right.$) of $\mathrm{ArC}(\mathrm{Cl}) \mathrm{Ph}_{2}$ and $\mathrm{ArCH}(\mathrm{Cl}) \mathrm{Ph},{ }^{89} \rho^{+}=-2.60$ and -3.90 , respectively. For ArCH(Cl) $\mathrm{Ph}, \rho^{+}\left(85 \%\right.$ acetone, $\left.0^{\circ} \mathrm{C}\right)=-5.72$ from literature data. ${ }^{61}$ Assuming a similar behavior of $\mathrm{ArC}(\mathrm{Cl}) \mathrm{Ph}_{2}$ and extrapolation to 80% acetone, at $25^{\circ} \mathrm{C}$, gave $\rho^{+}=-3.53$ (cf. Table III). On the assumption that the ratio of the ρ^{+}values for substitution in the first and the second ring of $\mathrm{Ar}_{2} \mathrm{CHX}$ is identical with those for substitution in the first vs. the second or third ring of $\mathrm{Ar}_{3} \mathrm{CCl}$, $\log k_{\text {solv }}\left(\mathrm{An}_{3} \mathrm{CCl}\right)=7.02$. For calculating $k_{\text {solv }}\left(p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{Cl}\right)$ we assumed that, since the reactivities of $\mathrm{An}_{3} \mathrm{C}^{+}$and $p-$ $\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}{ }^{+}$toward nucleophiles do not differ very much, ${ }^{19 c, 90}$ $k_{\text {solv }}\left(\mathrm{An}_{3} \mathrm{CCl}\right) / k_{\text {solv }}\left(p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{Cl}\right)=k_{\mathrm{w}}(p-$ $\left.\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}{ }^{+}\right)^{90} / k_{\mathrm{W}}\left(\mathrm{An}_{3} \mathrm{C}^{+}\right) .{ }^{19 \mathrm{c}}$

Discussion

Revised $\log k_{\text {solv }}$ vs. $\log \left(k_{\mathrm{N}} / k_{\mathrm{W}}\right)$ Plot. Mechanistic Regions. The data of Table III are plotted in Figure 1. Various values for the same compound are connected by a line, and lines extending beyond a single point give the estimated range. Jencks' systems ${ }^{25 \mathrm{a}}$ are represented by triangles and the RHHS slope is given for comparison. The plot is not linear, but when ignoring the troublesome systems, 10 and 17 (see below) and the points for systems reacting with N_{3}^{-}via $\mathrm{S}_{\mathrm{N}} 2,{ }^{25,33,68}$ it is approximately sigmoid with an appreciable spread of points. The slope of $\log k_{\text {solv }}$ vs. log ($k_{\mathrm{N}} / k_{\mathrm{W}}$) is very steep at the upper part, less steep in the middle, and steeper again or even inverted at the bottom. If the systems in region d are ignored (see below), the resulting "bell shaped" curve resembles very much the shape of Jencks' "predicted" RS
(81) Cox, E. F.; Caserio, M. C.; Silver, M. S.; Roberts, J. D. J. Am. Chem. Soc. 1961, 83, 2719.
(82) Harris, J. M.; Mount, D. L.; Smith, M. R.; Neal, W. C.; Dukes, M. D.; Raber, D. J. J. Am. Chem. Soc. 1978, 100, 8147.
(83) (a) Nordlander, J. E.; Owuor, P. O.; Carbal, D. J.; Haky, J. E. J. Am. Chem. Soc. 1982, 104, 201. (b) Nordlander, J. E.; Haky, J. E. Ibid. 1981, 103, 1518.
(84) Brown, H. C.; Ravindranathan, M.; Chloupek, F. J.; Rothberg, I. J. Am. Chem. Soc. 1978, 100, 3143.
(85) Schleyer, P. v. R.; Fry, J. L.; Lam, L. K. M.; Lancelot, C. J. J. Am. Chem. Soc. 1970, 92, 2542.
(86) It is very difficult to analyze completely the literature data in an unequivocal way; e.g., some of the revised values of Table III differ somewhat from values published by us in the preliminary communications ${ }^{2}$ either since we revealed new data or rechecked additional literature assumptions.
(87) Winstein, S.; Hojo, M.; Smith, S. Tetrahedron Lett. 1960, 12. Winstein, S.; Gall, J. S.; Hojo, M.; Smith, S. J. Am. Chem. Soc. 1960, 82, 1010.
(88) RHHS's value (74), which was also used in the plot, is identical with the value reported in the same table for p-tert-butylbenzhydryl chloride. ${ }^{11}$
(89) Nixon, A. C.; Branch, G. E. J. Am. Chem. Soc. 1936, 58, 492.
(90) Ritchie, C. D.; Wright, D. J. J. Am. Chem. Soc. 1971, 93, $2429,6754$.
plot for carbocations, ${ }^{91 a}$ and his points ${ }^{25 a}$ fit nicely with the rest of the data.

Phenomenologically, Figure 1 shows four (or five) distinguished regions that presumably reflect different mechanistic behaviors. (a) Ritchie's high $k_{\text {solv }}$-constant selectivity region. (b) A possible border region where the selectivity increases more than the reactivity of RCl but which may be due to an artifact. (c) A RS region where $\log \left(k_{\mathrm{N}} / k_{\mathrm{W}}\right)$ increases on increasing $k_{\text {solv. }}$. (d) A low $k_{\text {solv }}$ and nearly constant low selectivity region. (e) An inverted RS region where $\log \left(k_{\mathrm{N}} / k_{\mathrm{W}}\right)$ increases on decreasing $k_{\text {solv. }}$ The borders of these regions are not well-defined, and we try below to delineate them and their mechanistic significance. We find it advantageous to follow Jencks ${ }^{25,91}$ in analyzing the plot in terms of the rates of the individual capture processes and the lifetimes of the reaction intermediates. For the diffusion-controlled rate constants ($k_{\text {diff }}$) we used Jencks' estimation of $5 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$, , 25.92 and for the rate constant of molecular vibration we took $k=10^{13}$ s^{-1}, implying that if a calculated rate constant exceeds this value, "the intermediate is not an intermediate". ${ }^{91 \mathrm{a}}$

Region a. The High $\boldsymbol{k}_{\text {solv }}$-Constant Selectivity Region. Stable cations show a constant selectivity. ${ }^{5}$ However, Johnson had suggested that deviations from Ritchie's plot are sufficient to account for the range of selectivity ratios observed in carbenium ion reactivities. ${ }^{4 c}$ Consequently, it is relevant to our work to question the constancy of the $N_{+}\left(\mathrm{N}_{3}{ }^{-}\right)$values.

The first reported value (5.4) on the basis of $p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}{ }^{+}$ was assumed to be a lower limit since the $\mathrm{ArN}_{2}{ }^{+}+\mathrm{N}_{3}{ }^{-}$reaction may not be rate determining. ${ }^{90}$ Similar values (5.4 and 5.6) based on $\mathrm{An}_{3} \mathrm{C}^{+}$were calculated by Ritchie in 1972 ${ }^{93,5 \mathrm{5a}}$ from Bunton's data. ${ }^{19 \mathrm{c}}$ We calculated values of 5.7 and 6.5 , respectively, from Ritchie's recent data for $\mathrm{An}_{2} \mathrm{C}^{+}\left(\mathrm{o}^{-} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{3}^{-}\right)$(PHRDME) and $\mathrm{An}_{2} \mathrm{C}^{+}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{Me}\right)$ (DAMS). ${ }^{51}$ However, in a summary table in 1975 an $N_{+}\left(\mathrm{N}_{3}^{-}\right)$of 7.6 on the basis of the reaction of $\mathrm{An}_{3} \mathrm{C}^{+}$ was given. ${ }^{56}$ The new N_{+}value arises ${ }^{94}$ because water was dropped as a standard nucleophile since the water reaction was found to be general base catalyzed. ${ }^{190,-8}$ Instead, for the three $\mathrm{An}_{2} \mathrm{C}^{+} \mathrm{Ar}$ ions, $\log k_{\mathrm{N}_{u}}$ values were plotted against N_{+}of $\mathrm{HO}^{-}, \mathrm{MeONH}_{2}$, and $\mathrm{H}_{2} \mathrm{NNH}_{2}$ and from the slope of the correlation line, and k_{N} $N_{+}\left(\mathrm{N}_{3}^{-}\right)$values of 6.4-7.6 were calculated. ${ }^{94,95}$ An average of 12 values gives the best available N_{+}value of 7.14 ± 0.37. ${ }^{94}$ This procedure gave in our hands poor correlations with slopes of 0.92 for the three $\mathrm{An}_{2} \mathrm{C}^{+} \mathrm{Ar}$ ions. However, by using a larger number of nucleophiles with a wide range of N_{+}values, we obtained better correlations with slopes of 0.76 ± 0.01. The N_{+}values from the lines are $7.9\left(\mathrm{An}_{3} \mathrm{C}^{+}\right), 7.6$ (PHRDME), and 8.4 (DAMS), giving an average of 8.0 ± 0.3.
Hence, the $N_{+}\left(\mathrm{N}_{3}{ }^{-}\right)$values, as well as the $k_{\mathrm{N}} / k_{\mathrm{W}}$ values that are derived from them by multiplying by $\left[\mathrm{H}_{2} \mathrm{O}\right]=55.5 \mathrm{M}$, are nearly constant for the ions studied, although it is a question what is their best value. A RS behavior is not observed since N_{+}^{-} ($\mathrm{An}_{3} \mathrm{C}^{+}$) $\sim N_{+}$(PHRDME), although their reactivities toward nucleophiles differ greatly. ${ }^{96}$
Why are the $N_{+}\left(\mathrm{N}_{3}{ }^{-}\right)$values constant? An explanation consistent with the RSP was offered by Pross. ${ }^{18}$ We note that the basic requirement of Hammond's postulate ${ }^{7}$ i.e., energy similarity of two consecutive species along the reaction coordinate, is mostly not fulfilled. ΔG^{*} values are high and differ appreciably from ΔG° values for both exothermic and endothermic reactions. ${ }^{97}$ The
(91) (a) Jencks, W. P. Acc. Chem. Res. 1980, 13, 161: (b) Chem. Soc. Rev. 1981, $10,345$.
(92) Young, P. R.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 8238.
(93) Ritchie, C. D.; Virtanen, P. O. I. J. Am. Chem. Soc. 1972, 94, 4966.
(94) Ritchie, C. D., private communication.
(95) We see no reason for dropping water as the standard nucleophile only for calculating $N_{+}\left(\mathrm{N}_{3}^{-}\right)$and not for other nucleophiles, e.g., CN^{-}or HO^{-}
(96) In contrast with expectations on the basis of σ^{+}values the reactivities of DAMS and PHRDME toward nucleophiles are 2 orders of magnitude lower than that of $\mathrm{An}_{3} \mathrm{C}^{+} .{ }^{51}$ However, this may reflect steric effects on the k_{Nu} values.
(97) For the reaction of stable $\mathrm{Ar}_{3} \mathrm{C}^{+}$with water, $\Delta G^{* \prime} \mathrm{~s}\left(\mathrm{kcal} \cdot \mathrm{mol}^{-1}, 25\right.$ ${ }^{\circ} \mathrm{C}$) are between 23.5 for crystal violet and 16 for $\mathrm{An}_{3} \mathrm{C}^{+}$, whereas the ΔG° 's (kcal.mol ${ }^{-1}, 25^{\circ} \mathrm{C}$) change from 12.8 for crystal violet to 0.3 for DAMS. ${ }^{196.51}$ For reactions with $\mathrm{N}_{3}{ }^{-}$in water, $\Delta G^{\star \prime}$ s are between 11.8 (PHRDME) and 8.3 $\left(\mathrm{An}_{3} \mathrm{C}^{+}\right)$and ΔG° changes from -3.1 (PHRDME) to $-6.5\left(\mathrm{An}_{3} \mathrm{C}^{+}\right) .{ }^{19 c .51}$

Table IV. $k_{\mathrm{N}} / k_{\mathrm{Cl}}$ Values for Reactive Carbocations

no. ${ }^{\text {a }}$	compd	$\underline{\log k_{\text {solv }}{ }^{\text {b }}}$	$k_{\mathrm{N}} / k_{\mathrm{W}}{ }^{c}$	$k_{\mathrm{Cl}} / k_{\mathrm{W}}$ (ref)	$k_{\mathrm{N}} / k_{\mathrm{Cl}}$
5	$\mathrm{Ph}_{3} \mathrm{CCl}$	1.34	10^{5}	$3100^{\text {d }}$ (41)	32
8	$p-\mathrm{Tol}{ }_{2} \mathrm{CHCl}$	-1.66	227	384^{e} (20)	0.59
			316	$742^{\text {d }}$ (20)	0.43
10	6-CMBPf	-2.03	4.10^{4}	$1.33 \times 10^{4 d}$ (22)	3.0
13	$p-\mathrm{TolCH}(\mathrm{Cl}) \mathrm{Ph}$	-2.80	188	$356{ }^{d, e}$ (20)	0.53
16	$p-t-\mathrm{BuC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Cl}) \mathrm{Ph}$	-3.12	74	111^{e} (20)	0.67
17	$9-\mathrm{CMA}^{\text {g }}$	-3.53	4.5.104	$1950{ }^{\text {d }}$ (22)	22.8
19	$\mathrm{Ph}_{2} \mathrm{CHCl}$	-4.14	56	$56^{e}(20)$	1.0^{h}
25	t - BuCl	-5.70	12	$7^{i}-11^{j}$	1.7-1.1

${ }^{a}$ In Table III. ${ }^{b}$ In 80% acetone at $25^{\circ} \mathrm{C}$, values from Table III. ${ }^{c}$ From Table I or III. ${ }^{d}$ From the decrease in $k_{\text {solv }}$ in the presence of added Cl^{1}. ${ }^{e}$ From the drift in $k_{\text {solv }}$ during a run due to common ion rate depression. ${ }^{6}$-Chloromethylbenzo[a]pyrene.
${ }^{g} 9$-(Chloromethyl)anthracene. h Based on Ingold's data for both nucleophiles in 90% acetone. Other $k_{\mathrm{N}} / k_{\mathrm{W}}$ values are given in Tables I and III. From the kinetic data of: Diaz, A. F.; Assamunt, N. Te trahedron $1974,30,797$, in 90% acetone we calculated $k_{\mathrm{C}} / k_{\mathrm{W}}$ of 22 ± 3. From Kohnstam's ${ }^{21 \mathrm{a}} \alpha_{\mathrm{C} 1}$ value of 2.08 in 70% acetone we calculated $k_{\mathrm{Cl}} / k_{\mathrm{W}}=35$. $k_{\mathrm{N}} / k_{\mathrm{Cl}}$ values of $1.5-8$ may also be calculated. ${ }^{i}$ From exchange experiments in 60% aqueous acetone. ${ }^{53}{ }^{j}$ Calculated from the data of: Schuster, R. H.; Schneider, I. A. Rev. Roum. Chem. 1973, 18, 1841 , in 50% dioxane, $[\mathrm{KCl}]=0.66-1.33 \mathrm{M}$ at $25^{\circ} \mathrm{C}$. The $k_{\mathrm{Cl}} / k_{\mathrm{W}}$ ratios change strongly and unsystematically with $\left[\mathrm{Cl}^{-}\right]$, the solvent composition and the temperature and involve a relatively large error.

RS treatment may be unjustified ${ }^{3 a}$ if this is a case of a high intrinsic barrier where changes in the cation stability do not affect the position of the transition state in relation to the bond-making process. The constant selectivity may indicate that the process measured is mainly solvent reorganization ${ }^{\text {Sd }}$ and is therefore independent of R^{+}.

Regions band c. The Border Region and the Apparent RS Region. Diffusion-Controlled $\mathrm{N}_{3}-\mathbf{R}^{+}$Reaction. The reaction of $\mathrm{N}_{3}{ }^{-}$with Ritchie's stable cations is very rapid, but still $k_{\mathrm{N}} \ll k_{\text {diff }}$. With the solvolytically generated less stable and presumably more reactive cations, k_{N} should increase. Consequently, a region where $k_{\mathrm{N}}=k_{\text {diff }}$ is \sim constant with all the cations should exist below the constant selectivity region. Any apparent RS behavior may then reflect a stability-reactivity relationship for the reactions of the various $\mathrm{R}^{+\prime} \mathrm{s}$ with water alone, as suggested previously. ${ }^{64,24,25 \mathrm{a}, 91}$ The problem is how to define the upper border of this region and whether it is directly below the constant selectivity region.
If the transition-state energy is sufficiently lowered before k_{N} $=k_{\text {diff }}$, a real RS behavior for pairs of nucleophiles could result for ions less stable than Ritchie's ions. We believe that either $\mathrm{Ph}_{3} \mathrm{C}^{+}$or $\mathrm{AnC}^{+} \mathrm{HMe}$ is close to the intersection point between the activation-controlled and the diffusion-controlled reaction with $\mathrm{N}_{3}{ }^{-}$, so that the shape of the plot between compounds 3 and 5 or $\mathbf{3}$ and 7 of Table III may reflect a RS behavior, i.e., decreased selectivity on increased reactivity of R^{+}. However, we note that Richard and Jencks ${ }^{25 a}$ assumed that reaction of R^{+}dervied from compound 3 with $\mathrm{N}_{3}{ }^{-}$is already diffusion controlled. Moreover, since the data for compounds 3-6 require several extrapolations and may contain large errors, the shape of the plot in region b is not certain. The question of the existence of a border region should be probed with more accurate data. At present it seems that in the border region $\mathrm{d} \log k_{\text {solv }} / \mathrm{d} \log \left(k_{\mathrm{N}} / k_{\mathrm{W}}\right)<1$, i.e., the selectivity increases faster than the "reactivity" in contrast with the opposite behavior in region c .

Different approaches give somewhat different answers concerning the position of Figure 1 at which k_{N} becomes diffusion controlled. First, in this region E_{a} for the $\mathrm{N}_{3}{ }^{-}$reaction should be close to zero, whereas E_{a} for the activation-controlled reaction with $\mathrm{H}_{2} \mathrm{O}$ should be positive. Consequently, the selectivity can increase on increasing the temperature only when both processes are activation controlled. ${ }^{98}$ Indeed, the selectivity of $\mathrm{Ph}_{2} \mathrm{CHBr}$ decreases by 10% between 25 and $50^{\circ} \mathrm{C}^{41}$ (Table I), and the selectivities of $p-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CH}\left(\mathrm{CMe}_{3}\right) \mathrm{OMs}(\mathrm{X}=\mathrm{Me}, t$-Bu) are 6% lower at $35^{\circ} \mathrm{C}$ compared with $7^{\circ} \mathrm{C}$. On the other hand, the selectivities of $\mathrm{Tol}_{2} \mathrm{CHCl}$ (Table I) ${ }^{38}$ and of camphene hydrochloride in MeOH^{53} (where $k_{\text {solv }} \leq k_{\text {sodv }}\left(\mathrm{Tol}_{2} \mathrm{CHCl}\right)$) increase with the temperature. Consequently, this approach suggests that region c is still not achieved for ions derived from compounds 3-7 of Table

[^7]III, which are more stable than $\mathrm{Tol}_{2} \mathrm{CH}^{+}$. Moreover, it is likely that compounds significantly less reactive than $p-\mathrm{Tol}_{2} \mathrm{CHCl}$ (i.e., compounds 9-14) will still show an activated reaction with $\mathrm{N}_{3}{ }^{-9} .9$ This contrasts the conclusion reached below by other methods. ${ }^{100}$
Second, an approximate border for region c can be estimated by comparing the relative reactivities of N_{3}^{-}and a weaker nucleophile Nu^{-}. When $\mathrm{N}_{3}{ }^{-}$reacts by $k_{\text {diff }}$ and Nu^{-}still reacts by an activation-controlled process, the $k_{\mathrm{N}} / k_{\mathrm{N} u}$ ratio will regularly decrease on increasing the reactivity of R^{+}. A $k_{\mathrm{N}} / k_{\mathrm{Nu}}$ ratio of ca. 1 is obtained, regardless of R^{+}, when k_{Nu} becomes diffusion controlled. A comparison with Cl^{-}is pertinent, since the nucleophilicity of $\mathrm{Cl}^{-}(n=2.7)^{101}$ is lower than that of $\mathrm{N}_{3}^{-}(n=4.0)$ in water in $\mathrm{S}_{\mathrm{N}} 2$ reactions and possibly also in reactions with carbocations. ${ }^{102}$ In Table IV we summarize the relevant data calculated mostly from common ion rate depressions. ${ }^{103}$ Most of the data are due to Ingold et al. ${ }^{20}$ so that in order to avoid confusion regarding the dependence on $\left[\mathrm{H}_{2} \mathrm{O}\right]$, we compared their data for N_{3}^{-}and Cl^{-}at the same water concentration (compounds 16 and 19 in 90% acetone and compound 8 in both 85% and 90% acetone). The only $k_{\mathrm{N}} / k_{\mathrm{C} 1}$ ratios that exceed unity are 32 for $\mathrm{Ph}_{3} \mathrm{CCl}, 23$ for 9 -(chloromethyl) anthracene (9-CMA), and 3.0 for 6-(chloromethyl) benzo[a]pyrene (6-CMBP). All the other compounds for which $k_{\text {solv }}<k_{\text {solv }}\left(\mathrm{Ph}_{3} \mathrm{CCl}\right)$ show ratios close to unity, especially if errors in α values are considered. The higher $k_{\mathrm{N}} / k_{\mathrm{Cl}}$ values for 9-CMA and 6-CMBP compared with those for compounds with similar or higher $k_{\text {solv }}$ are not surprising since their $k_{\mathrm{N}} / k_{\mathrm{W}}$ values deviate strongly from the line in Figure 1 , and the $\alpha_{\mathrm{Nu}}=k_{\mathrm{Nu}} / k_{\mathrm{W}}\left[\mathrm{H}_{2} \mathrm{O}\right]$ values for $6-\mathrm{CMBP}$ in 50% acetone show an unusual order. ${ }^{22}$ As seen from Table IV, according to this criterion the reaction of $\mathrm{Ph}_{3} \mathrm{C}^{+}$may not be diffusion controlled, ${ }^{104}$ but those of $p-\mathrm{Tol}_{2} \mathrm{CH}^{+}$and more reactive ions derived from compounds below compound 8 in Table III are diffusion controlled.

Two additional compounds were not included in Table IV. For $\mathrm{An}_{2} \mathrm{CH}^{+}$the $\log \left(k_{\mathrm{N}} / k_{\mathrm{W}}\right)$ for the mesitoate in MeOH^{50} and the $\log \left(k_{\mathrm{Cl}} / k_{\mathrm{W}}\right)$ in 85% acetone ${ }^{21 \mathrm{a}}$ give a $k_{\mathrm{N}} / k_{\mathrm{Cl}}$ value of 3-4. A $k_{\mathrm{N}} / k_{\mathrm{Cl}}$ value of ca. 1 can be calculated for camphene hydrochloride

[^8]Table V. Relative Reactivities of Nucleophiles toward R^{+}and RX

substrate	Nu	solvent	$k_{\mathrm{Nu}} / k_{\mathrm{N}}$	ref
$\mathrm{An}_{3} \mathrm{C}^{+}$	$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{~S}^{-}$	$\mathrm{H}_{2} \mathrm{O}$	14	5c, 19c
	$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{SH}$	$\mathrm{H}_{2} \mathrm{O}$	6.6×10^{-7}	5c, 19c
$\mathrm{An}_{2} \mathrm{C}^{+}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{Me}-\mathrm{o}\right)$	$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{~S}^{-}$	$\mathrm{H}_{2} \mathrm{O}$	4.4	51
$\mathrm{AnCH}(\mathrm{OCOAr}) \mathrm{Me}$	$\mathrm{MeOCOCH}_{2} \mathrm{~S}^{-}$	50\% TFE	0.6	25a
AnCH(OCOAr)Me	$\mathrm{MeCH}_{2} \mathrm{CH}_{2} \mathrm{SH}$	50\% TFE	0.33	25a
$\mathrm{Ph}_{2} \mathrm{CHCl}$	NCS ${ }^{-}$	75\% dioxane	1.6	39
$\mathrm{Ph}_{3} \mathrm{CCl}$	NCS ${ }^{-}$	92\% Me ${ }_{2} \mathrm{CO}-2 \%$ dioxane-6\% $\mathrm{H}_{2} \mathrm{O}$	0.14	41
$\mathrm{An}_{3} \mathrm{C}^{+}$	$\mathrm{BH}_{4}{ }^{-}$	$\mathrm{H}_{2} \mathrm{O}$	0.26	19c, 105
$c-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OMs}^{\text {a }}$	BH_{4}^{-}	66.67\% diglyme	$0.75 \pm 0.25^{\text {c }}$	56
$c^{-} \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{OMs}^{\text {b }}$	$\mathrm{BH}_{4}{ }^{-}$	66.67\% diglyme	0.78 ± 0.32^{c}	56
$1-\mathrm{Me}-\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OMs}^{a}$	$\mathrm{BH}_{4}{ }^{-}$	66.67\% diglyme	2.3 ± 1.5^{c}	56
$1-\mathrm{Me}-\mathrm{c}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{OMs}^{\text {b }}$	BH_{4}^{-}	66.67\% diglyme	2.4 ± 1.6^{c}	56

 with the liberated $\mathrm{MeSO}_{3} \mathrm{H}$.
in 80% aqueous $\mathrm{CH}_{2}(\mathrm{OMe})_{2},{ }^{53}$ assuming that it gives an identical product distribution to that from norbornyl chloride. Both values are consistent with the above conclusion.

Scattered data for comparison with other nucleophiles in other media are given in Table V. Anionic thio nucleophiles gave $k_{\mathrm{RS}} / / k_{\mathrm{N}}>1$ with two of Ritchie's ions ${ }^{5 c, 51}$ and a value <1 for reaction with $\mathrm{AnCH}(\mathrm{OCOAr}) \mathrm{Me} .{ }^{25 \mathrm{a}}$ Hence, the border between the activated and the diffusion-controlled regions is above compound 7 of Table III. $k_{\mathrm{BH}_{4}} / k_{\mathrm{W}}$ values are available for reactions with several cycloalkyl mesylates ${ }^{56}$ and for $\mathrm{An}_{3} \mathrm{C}^{+},{ }^{105}$ but the similar reactivities of both nucleophiles with $\mathrm{An}_{3} \mathrm{C}^{+}$give them little mechanistic value. In a RS study of the solvolysis of 1phenylethyl derivatives Richard and Jencks ${ }^{25 a}$ used the low $k_{\mathrm{N}} / k_{\text {RSH }}$ value of 3 for $\mathrm{AnCH}(\mathrm{OCOAr}) \mathrm{Me}$ as evidence that the reaction of both nucleophiles with the derived cation or with more reactive $\mathrm{ArC}^{+} \mathrm{HMe}$ cations of Table III are encounter controlled.

Finally, estimation of the k_{W} value for $\mathrm{Ph}_{3} \mathrm{C}^{+}$and the $k_{\mathrm{N}} / k_{\mathrm{W}}$ value enables calculation of a k_{N} value that can be compared with $k_{\text {diff }}=5 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. The $\log \left(k_{\mathrm{W}}\left[\mathrm{H}_{2} \mathrm{O}\right]\right)\left(\mathrm{s}^{-1}\right)$ values for three triarylmethyl cations are $1.11 \pm 0.03\left(\mathrm{An}_{3} \mathrm{C}^{+}\right), 1.98 \pm 0.7$ $\left(\mathrm{An}_{2} \mathrm{C}^{+} \mathrm{Ph}\right), 3.0 \pm 0.3\left(\mathrm{AnC}^{+} \mathrm{Ph}_{2}\right) .{ }^{196}$ If this additive trend continues, the extrapolated $\log \left(k_{\mathrm{W}}\left[\mathrm{H}_{2} \mathrm{O}\right]\right)$ value is 4.0 ± 0.1 and $k_{\mathrm{w}}\left(\mathrm{Ph}_{3} \mathrm{C}^{+}\right)=150 \pm 30 \mathrm{M}^{-1} \mathrm{~s}^{-1}$. This is a minimum value since the resonance stabilization of the anisyl-substituted cations may be mostly due to one anisyl group. For example, if the Hammett relationship for k_{W} takes the form $\log \left(k / k_{0}\right)=\rho\left(\sigma^{+}{ }_{\text {1st ring }}+\right.$ $\left.\sum \sigma_{2 \text { nd }+3 \text { rd ring }}\right)^{106}$ the above data give $\rho=3.51$, from which $k_{W^{-}}$ $\left(\mathrm{Ph}_{3} \mathrm{C}^{+}\right)=9.7 \times 10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. Another estimation is based on the $\mathrm{p} K_{\mathrm{R}}{ }^{+}$values for trityl cations. ${ }^{107}$ We calculated $\rho^{+}=5.28$ for substitution in the first ring, and $\rho^{+}=2.87$ for adding a $p-\mathrm{MeO}$ group to the second and third ring. If the same ρ^{+}ratio is applied to the reaction of water with the same trityl cations we obtain $\rho^{+}=2.3$ for substitution in the first ring and then $k_{W}\left(\mathrm{Ph}_{3} \mathrm{C}^{+}\right)$ $=1100 \mathrm{M}^{-1} \mathrm{~s}^{-1}$.

Different $k_{\mathrm{N}} / k_{\mathrm{W}}$ values for $\mathrm{Ph}_{3} \mathrm{C}^{+}$can be obtained by using different assumptions. If the constant selectivity region extends to $\mathrm{Ph}_{3} \mathrm{C}^{+}$, the expected $k_{\mathrm{N}} / k_{\mathrm{W}}$ value will be 2.3×10^{7} as found for $\mathrm{An}_{3} \mathrm{C}^{+}{ }^{19}$ The much lower experimentally measured selectivity (Table III) may be due to experimental difficulties, such as insufficient mixing of the reaction mixture, or to the inequality k_{N} $\gg k_{\text {diff }}$, which necessarily reduces the observed $k_{\mathrm{N}} / k_{\mathrm{W}}$ ratios. Alternatively, it may be assumed that the RSP operates and the $k_{\mathrm{N}} / k_{\mathrm{W}}$ value for $\mathrm{Ph}_{3} \mathrm{C}^{+}$is 3.1×10^{5}, which is the highest value observed. ${ }^{41}$ Combination of the alternative $k_{\mathrm{N}} / k_{\mathrm{W}}$ values gives six different k_{N} values ranging from 4.6×10^{7} to $2.2 \times 10^{11} \mathrm{M}^{-1}$

[^9]s^{-1}. Using $k_{\mathrm{W}}=1100 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and $k_{\mathrm{N}} / k_{\mathrm{W}}=3.1 \times 10^{5}$ gives k_{W} $=3.4 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$, which we regard as a very probable value. In spite of the wide range of k_{N} values, a qualitative conclusion is still possible. $\mathrm{Ph}_{3} \mathrm{C}^{+}$is either at the or close to the border between the activation-controlled and the diffusion-controlled regions. Since $\mathrm{Ph}_{3} \mathrm{C}^{+}$was the most selective cation in the previous RS plots ${ }^{10.11}$ the present results strongly support the suggestion ${ }^{24}$ that the previous RS plots reflect only the increase in k_{W} when the stability of R^{+}is decreased. ${ }^{108}$

The slope of $\log k_{\text {solv }}$ vs. $\log \left(k_{\mathrm{N}} / k_{\mathrm{W}}\right)$ at region c is therefore the slope of the $\log k_{\text {solv }}$ vs. $-\log k_{\mathrm{W}}$ relationship. Arguments concerning the stability-reactivity relationship of carbocations suggest that it will be monotonous with a positive slope, but there is no compelling argument why it should be linear. The spread of the points in Figure 1, which may reflect the errors in the two parameters, makes it difficult to define the shape of a possible curve. However, the regression line fitting most of the data has a slope of $1.5,{ }^{109}$ a value that is much smaller than the previously reported ones. ${ }^{10.11}$ The main reasons for the difference are the appreciably smaller $k_{\mathrm{N}} / k_{\mathrm{W}}$ values used previously for $\mathrm{Ph}_{3} \mathrm{CCl}$ and the use of points 39 and 54 for the 1 - and 2 -adamantyl systems by RHHS. ${ }^{11}$
Most of the difficulties associated with correlations of data from various sources should disappear on using only Richard and Jencks' data for the single class of compounds $\operatorname{ArCH}(\mathrm{X}) \mathrm{Me}^{25 \mathrm{a}}$ with both electron withdrawing and donating substituents, although the selectivities were measured in 50% TFE- $50 \% \mathrm{H}_{2} \mathrm{O}$. When Tsuno's $k_{\text {solv }}$ values ${ }^{60}$ are plotted against the dimensionless $k_{\mathrm{N}} / k_{\mathrm{W}}$ values, the five systems that react via $\mathrm{S}_{\mathrm{N}} 1$ give an approximate linear relationship with a slope of $1.3(r=0.987)$. This slope is a ratio of two ρ^{+}values: -5.7 for $\log k_{\text {soly }}$ vs. σ^{+}and -4.3 for $k_{\mathrm{N}} / k_{\mathrm{W}}$ vs. σ^{3}.110,111 The slope is remarkably similar to that obtained above by using much more diverse systems.

Regions dand e. Lifetime of the Cationoid Intermediate. A Shift from $\mathrm{S}_{\mathrm{N}} 1$ to $\mathrm{S}_{\mathrm{N}} \mathbf{2}$ Mechanism. When $k_{\mathrm{N}}=k_{\text {diff }}$ an increase in the reactivity of R^{+}still increases k_{W} and at the limit it should also be diffusion controlled. This should result in a $k_{\mathrm{N}} / k_{\mathrm{W}}$ ratio of unity so that the lower part of the plot should coincide with the $\log k_{\text {solv }}$ axis. This was not observed experimentally, as already noted by RHHS. ${ }^{11}$ One possibility is that as $k_{\text {solv }}$ decreases, the stability and the lifetime of the intermediate also decrease and when k_{N} reaches and exceeds $10^{13} \mathrm{~s}^{-1}$ (the rate of molecular vibration $)^{91}$ the intermediate does not exist anymore, ${ }^{91 a}$ and an alternative concerted route, first order in $\mathrm{N}_{3}{ }^{-}$with a selectivity

[^10]>1, is enforced on the reaction. Another possibility is a preassociation stepwise route. According to Jencks ${ }^{91 b}$ "when the intermediate does not exist or is too unstable to diffuse through the solvent, the reaction must occur through a preassociation mechanism in which the reactants, including the final reactant or catalyst, are assembled before the bond-making or -breaking step occurs". If N_{3} - or the ion pair $\mathrm{M}^{+} \mathrm{N}_{3}{ }^{-}$stabilize the transition state for the ionization, the opportunity to form RN_{3} may increase (see below) resulting in a $k_{\mathrm{N}} / k_{\mathrm{W}}>1$. The mechanistic questions are therefore at what stage in Figure $1 k_{\mathrm{W}}$ becomes diffusion controlled and $k_{N}\left[\mathrm{~N}_{3}{ }^{-}\right]$becomes larger than $10^{13} \mathrm{~s}^{-1}$ and which of these two situations appears earlier?

A likely estimate can be derived by extrapolating the approximate linear relationship in the diffusion-controlled region of Figure 1 to $\log \left(k_{\mathrm{N}} / k_{\mathrm{W}}\right)=0$ where $k_{\mathrm{N}}=k_{\mathrm{W}}=k_{\text {diff }}=5 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. This extrapolation gives $k_{\text {solv }} \sim 10^{-6} \mathrm{~s}^{-1}$ as the value below which the $\mathrm{R}^{+}+\mathrm{H}_{2} \mathrm{O}$ reaction is diffusion controlled. A similar value is obtained by using Jencks' compounds 3, 7, 11, 14, and 21 in Figure 1. Inspection of the line suggests that the error in $k_{\text {solv }}$ does not exceed 1 order of magnitude. Consequently, in the absence of special factors that were not included in this treatment, all the compounds below compound 26 in Table III that react via $\mathrm{S}_{\mathrm{N}} 1$ would react with $k_{\mathrm{W}}=k_{\text {diff }}$.

Since $\left[\mathrm{H}_{2} \mathrm{O}\right]=11.2$ in 80% acetone, R^{+}will cease to be an intermediate in water when $k_{\mathrm{W}} \geq 10^{12} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. Further extrapolation of the linear relationship indicates that this will occur when $k_{\text {solv }} \leq 10^{-10} \mathrm{~s}^{-1}$, i.e., for compounds $45-54$, including 2 -adamantyl chloride.

The measured rate with $\mathrm{N}_{3}{ }^{-}$is dictated by the condition $k_{\mathrm{N}}=$ $k_{\text {diff }}$, but for calculating when $k_{\mathrm{N}}\left[\mathrm{N}_{3}^{-}\right] \geq 10^{13} \mathrm{~s}^{-1}$, the inherent nucleophilicity of $\mathrm{N}_{3}{ }^{-}$(rate constant $k_{\mathrm{N}}{ }^{\text {in }}$), which is free from the above limitation, is required. The ordinary $\mathrm{N}_{3}{ }^{-}$concentration studied is ca. 0.1 M , i.e., the $k_{\mathrm{N}}{ }^{\text {in }}$ value at which the switch over to a concerted process is expected, is $10^{14} \mathrm{~s}^{-1}$. For estimating the unknown $k_{N}{ }^{\text {in }}$ values the "inherent" selectivities of R^{+}toward $\mathrm{N}_{3}{ }^{-}$ and $\mathrm{H}_{2} \mathrm{O}$ are required.

One possible assumption is that Ritchie's constant selectivity is inherent for all the $\mathrm{R}^{+} \mathrm{s}$, but it is not observed experimentally when $k_{\mathrm{N}}=k_{\text {diff. }}$. In this case $k_{\mathrm{N}} / k_{\mathrm{W}}=2.3 \times 10^{7}$ as found for $\mathrm{An}_{3} \mathrm{C}^{+}$, and $k_{\mathrm{N}} \geq 10^{14} \mathrm{~s}^{-1}$ when $k_{\mathrm{W}} \geq 4 \times 10^{6} \mathrm{~s}^{-1}$. From Figure 1 and the above calculations this value is already reached for the systems immediately below $\mathrm{Ph}_{3} \mathrm{CCl}$, in contrast with Ingold's kinetic data ${ }^{20}$ and McLennan's observation ${ }^{42}$ that $k_{\text {solv }}$ is independent of the $\left[\mathrm{N}_{3}{ }^{-}\right]$in the reaction of $\mathrm{Ph}_{2} \mathrm{CHCl}$ with $\mathrm{N}_{3}{ }^{-}$. Although this possibility is supported by Shafer and Harris' ${ }^{112}$ conclusion that a solvent participation may be important in the solvolysis of $\mathrm{Ar}_{2} \mathrm{CHCl}$ in aqueous EtOH , we agree with McLennan's recent conclusion ${ }^{13}$ that nucleophilic solvent participation in this system is absent. Otherwise, the reaction with the much better nucleophile [N_{3}^{-}] should be of an overall second order, in contrast with the experimental observation. ${ }^{114}$

A less extreme assumption is that $k_{\mathrm{N}}{ }^{\text {in }} / k_{\mathrm{W}}$ is nearly constant for unstable cations, being 3.1×10^{5}, the highest value measured for $\mathrm{Ph}_{3} \mathrm{C}^{+}$. This may be supported by the near constancy of the Winstein-Grunwald m values and the Hammett ρ values in the solvolysis of $\mathrm{Ar}_{2} \mathrm{CHOPNB} .^{113}$ In this case a concerted reaction with N_{3}^{-}is expected for systems with $k_{\text {solv }} \leq 10^{-5} \mathrm{~s}^{-1}$, i.e., for 2-methyl-2-adamantyl chloride and systems below it. Consequently, the $\mathrm{R}^{+}+\mathrm{H}_{2} \mathrm{O}$ reaction becomes diffusion controlled at approximately the same structural region where the reaction with $\mathrm{N}_{3}{ }^{-}$becomes concerted, and hence a $\log \left(k_{\mathrm{N}} / k_{\mathrm{W}}\right)$ value of 0 is not obtained. Indeed, the lowest value (0.52) is for the 2 -methyl-2-adamantyl system. ${ }^{14}$ In this case we may attribute the higher values for several of the lower systems in Figure 1 (region e) to a direct attack of $\mathrm{N}_{3}{ }^{-}$on RX . We note that the deviation

[^11]from linearity of $\log k_{\text {solv }}(t-\mathrm{BuX})$ vs. $\log k_{\text {solv }}(1$-adamantyl-X), $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, in media of low nucleophilicity led Bentley et al. ${ }^{79.115}$ to the conclusion that solvolysis of t - BuX in nucleophilic solvents involves nucleophilic solvent assistance. Hence, an $\mathrm{S}_{\mathrm{N}} 2$ reaction with $\mathrm{N}_{3}{ }^{-}$should not be surprising. ${ }^{116}$

The intervention of an $\mathrm{S}_{\mathrm{N}} 2$ process is supported by Jencks' data. ${ }^{25}$ The evidence for an $\mathrm{S}_{\mathrm{N}} 2$ reaction (second-order kinetics and positive ρ for the selectivity) starts with compound 24 of Table III, which is very close in reactivity to the 2 -methyl-2-adamantyl system (compound 23). Other compounds that are known to react with N_{3}^{-}via $\mathrm{S}_{\mathrm{N}} 2$ and show increasing $\log \left(k_{\mathrm{N}} / k_{\mathrm{W}}\right)$ with the decrease in $k_{\text {solv }}$ are the benzyl chlorides (20 and 27), ${ }^{68,70}$ the secondary chlorides (40 and 41), ${ }^{33}$ and 2-aryl-1-propyl tosylates in their reaction to form the primary products (51,52, and 53). ${ }^{33}$ The points for all these compounds are near the $\mathrm{S}_{\mathrm{N}} 2$ line, which we drew for Jenck's systems. Nair's 1 -arylneopentyl mesylates $\mathrm{ArCH}(\mathrm{X}) \mathrm{R}$ (systems 30, 31, 35, and 43, $\mathrm{X}=\mathrm{OMs}, \mathrm{R}=t-\mathrm{Bu}$) ${ }^{77}$ structurally resemble Jencks' compounds where $\mathrm{R}=\mathrm{Me}$, but their selectivities are lower. Although the kinetic order in $\mathrm{N}_{3}{ }^{-}$was not reported, the small selectivity increase on decreasing $k_{\text {solv }}$ or on decreasing the solvent polarity fit an $\mathrm{S}_{\mathrm{N}} 2$ process. ${ }^{77}$ The deviation from Jencks' $\mathrm{S}_{\mathrm{N}} 2$ line may result from an earlier transition state for the reaction with $\mathrm{N}_{3}-$, due to steric hindrance by the bulky tert-butyl group to nucleophilic approach.
The conclusion that systems with $k_{\text {solv }} \leq 10^{-5} \mathrm{~s}^{-1}$ react by a concerted process with N_{3}^{-}raises two questions. First, why a second order reaction with N_{3}^{-}(i.e., $k_{\text {obsd }}=k_{\text {solv }}+k_{\mathrm{N}}\left[\mathrm{N}_{3}^{-}\right]$) was not observed for all the compounds below compound 23 in Table III? Second, why do the cycloalkyl derivatives 29, 32, 33, 36, 39, 42, 50, and 54 form a new rgeion (region d) of low and approximate selectivity to that of compounds $\mathbf{2 5}$ and 26, i.e., log $\left(k_{\mathrm{N}} / k_{\mathrm{W}}\right)=1.2 \pm 0.2$?
The answer to the first question (which arises also when assuming a preassociation stepwise mechanism) is that when the selectivities are low the contribution of the $k_{\mathrm{N}}\left[\mathrm{N}_{3}\right]$ term to $k_{\text {obsd }}$ is small at low $\left[\mathrm{N}_{3}{ }^{-}\right.$] and can escape detection. In fact, addition of $\mathrm{N}_{3}{ }^{-}$to solvolyzing systems did increase the reaction rate, but it is difficult to distinguish a possible second-order term from a salt effect on $k_{\text {solv }}$ whose magnitude and even its direction are unknown or in dispute ${ }^{48 b}$ This is demonstrated in four compounds: (a) With t - BuBr in $90 \% \mathrm{Me}_{2} \mathrm{CO}$ addition of $0.1 \mathrm{M} \mathrm{N}_{3}{ }^{-}$raised the initial rate by 1.4 -fold, a similar effect to that of NaBr or $\mathrm{NaCl} .^{75}$ However, as the percent RN_{3} in the total product is only 6-10\%, a large effect on $k_{\text {obsd }}$ is not expected. (b) With cyclopropylmethyl mesylates in aqueous diglyme NaN_{3} gives higher acceleration than LiCl^{14} but the difference is too small if all the RN_{3} is formed via a second-order process. (c) For 1-adamantyl bromide, and 2-adamantyl tosylate, the observed percent RN_{3} values in $80 \% \mathrm{EtOH}$ are at least 1 order of magnitude smaller than the calculated values from rate increase assuming a sec-ond-order process. ${ }^{11}$ The b values are not high (1.2-2.1 and 2.7-4.1, respectively) but the percent RN_{3} are so low that kinetic arguments cannot be used to exclude second-order formation of RN_{3}. In 75% dioxane ${ }^{11}$ the percent RN_{3} is still 2 -fold lower than the expected value on the basis of rate acceleration so that a combination of a salt effect of NaN_{3} on the $\mathrm{S}_{\mathrm{N}} 1$ route and its second-order reaction with RX is possible. Indeed, slow second order reaction of $\mathrm{N}_{3}{ }^{-}$with 2-adamantyl-OBs in toluene was recently reported. ${ }^{117}$

The low and similar selectivities of most of the cycloalkyl systems do not necessarily arise from the same reason, as these compounds are tertiary (29 and 39), secondary ($33,36,42,50$, and 54), and primary ($\mathbf{2 6}$ and 32) with different degrees of

[^12]neighboring group participation in the solvolytic transition state and of hindrance to approach of the nucleophile to RCl or R^{+}. One possible explanation is that due to hindrance of concerted attack from the rear and its unfeasibility from the front, ${ }^{118}$ the concerted reaction does not take place. Instead, the formation of an ion pair whose lifetime in regard to $\mathrm{N}_{3}{ }^{-}$attack is $\gg 10^{-13}$ s^{-1} is "sterically enforced" on the reaction. Since attack on sterically hindered ion pairs from the rear is still difficult, $\mathrm{N}_{3}{ }^{-}$must attack them from the front. In the absence of an electronic barrier to the reaction, the rate of this attack is limited by the diffu-sion-controlled departure rate of the nucleofuge from the front. A stepwise substitution via the very reactive carbocations where $k_{\mathrm{W}}>k_{\text {diff }}$ must involve a preassociation with N_{3}^{-}or $\mathrm{M}^{+} \mathrm{N}_{3}{ }^{-}$. This may stabilize the transition state for ionization for which $\mathbf{1}$ is a
\[

$$
\begin{gathered}
{ }^{8+} R \cdots N_{3}^{-} \\
\vdots \\
{ }_{8-}-\cdots M^{+}
\end{gathered}
$$
\]

1
possible description ${ }^{119}$ and lead to a small preference for formation of RN_{3} (i.e., $\log \left(k_{\mathrm{N}} / k_{\mathrm{w}}\right)>0$). The recently observed secondorder reaction of 1 -adamantyl tosylate with PhONa in THF ${ }^{120}$ was interpreted as reflecting a front-side assistance to the ionization process, presumably by a transition state similar to 1.

A related explanation is based on the suggestion that the product-forming intermediate for most of the cycloalkyl compounds in region d is bridged. It is believed that exo- and endo-2-norbornyl derivatives solvolyze in aqueous organic media mainly via the same carbocation, ${ }^{78,84,121}$ which may be bridged. ${ }^{122}$ It was recently suggested that cyclooctyl tosylate solvolyzes via an hydrogen-bridged cation, ${ }^{82,83 a .123}$ and similar nonclassical ion pairs are probably formed from the isomers 26 and 29 or from the isomers 32 and $36 .{ }^{56,124,125}$ A bridged intermediate was also proposed for 1-methyl-2-adamantyl tosylate. ${ }^{83 \mathrm{~b}} \log \left(k_{\mathrm{N}} / k_{\mathrm{N}}\right)$ values greater than unity in region d, where the intermediate cations (if formed at all) should be very unstable, may also result from the formation of bridged ion pairs that are attacked from the front by the waiting N_{3}^{-}. In these species nucleophilic approach from the front may be less hindered than from the back, especially since the nucleofuge shields simultaneously the approach to several reaction sites. Our explanation is supported by the behavior of the phenonium ions 2 that are formed in a k_{Δ} process from $1-$

[^13]
2

aryl-2-propyl and 2-aryl-1-propyl tosylates. ${ }^{33.126}$ In Figure 1, the $\log \left(k_{\mathrm{N}} / k_{\mathrm{w}}\right)$ values for ions 2 derived from compounds 37,38 , 44, 45, 48, and 49 are between the approximate constant lowselectivity line passing through tert-butyl, 1- and 2 -adamantyl systems and the $\mathrm{S}_{\mathrm{N}} 2$ line for the relatively unhindered secondary substrates, whereas the other ions of region d are nearer to the former. It seems that the reaction of the bridged ions of region d have features that resemble a classical $\mathrm{S}_{\mathrm{N}} 2$ process. This is expected since for them the cation-nucleophile combination is concerted with the cleavage of the carbon-carbon bond of the bridge. This concerted reaction is more favored with the $\mathrm{N}_{3}{ }^{-}$, thus resulting in a selectivity higher than unity.

Isomeric precursors in region d such as exo- and endo-2-norbornyl, cyclopropylmethyl, and cyclobutyl derivatives and 1-aryl-2-propyl and 2-aryl-1-propyl derivatives, which presumably give similar product-forming bridged cations, should show similar $k_{\mathrm{N}} / k_{\mathrm{W}}$ values. This was assumed to be the case for the arylpropyl derivatives ${ }^{33}$ and was experimentally observed for the several cyclopropylmethyl-cyclobutyl pairs. ${ }^{56}$ endo-Norbornyl gave higher selectivity than the exo-isomer.

What is the $k_{\text {sdy }}$ value that should be used as a stability measure of the common intermediate? The isomers give differing $k_{\text {solv }}$ values that reflect ground- and transition-state energy differences. For the norbornyl isomers it was suggested that $\log k_{\text {solv }}(\mathrm{exo})$ is a better measure of the bridged ion stability. ${ }^{29}$ We included in Figure 1 the $k_{\text {solv }}$ values for both isomers in all the above mentioned systems, and this resulted in an increased scatter of the points.

The low-selectivity values of the less hindered compounds in region d may also result from a concerted reaction that involves a loose transition state with a low extent of C -nucleophile bond formation (i.e., an "uncoupled concerted mechanism"91b). The low $k_{\mathrm{N}} / k_{\mathrm{SOH}}$ value of 5 for the inverting solvolysis of 3β-cho-lestanyl-OBs in $66.7 \% \mathrm{EtOH}^{14}$ fits this explanation. The sec-ond-order rate constants for substitution of $\mathrm{ArCH}(\mathrm{Cl}) \mathrm{Me}$ with electron-withdrawing substituents by N_{3}^{-}give a high negative ρ^{+} value of $-3.3,{ }^{25 \mathrm{~b}}$ a value that is consistent with a very loose transition state.

Rear-side attack by $\mathrm{N}_{3}{ }^{-}$on endo-2-norbornyl tosylate is stericlaly allowed, ${ }^{117}$ and the solvolysis was suggested to be slightly nucleophilic assisted. ${ }^{78}$ A rearside attack by $\mathrm{N}_{3}{ }^{-}$on exo-2-norbornyl tosylate is also possible, as an inverted product is obtained in a second-order reaction with $\mathrm{N}_{3}{ }^{-}$in toluene, with a rate constant only 2 times smaller than for the endo isomer. The absence of deuterium scrambling during the solvolysis of the exo isomer ${ }^{117}$ and other results point to a concerted reaction, which can also be feasible in aqueous acetone. However, increase in the solvent polarity may change the mechanism. Indeed, the second-order reaction of exo-2-norbornyl tosylate with PhONa in the more polar THF is accompanied by a complete deuterium scrambling. ${ }^{120}$ It was suggested that the reaction proceeds via electrophilically salt-assisted ionization to form an ion pair. ${ }^{120}$ This may be termed "preassociation stepwise mechanism". ${ }^{1 \mathrm{lb}}$
Several reservations concerning the discussion above can be raised. First, points in region d may be misplaced since their log $k_{\text {solv }}$ reflects not only the stability of the cationoid intermediate (i.e., $k_{\text {solv }}=k_{\mathrm{c}}$ or k_{Δ}) but also a varying contribution of a sol-vent-assisted process $k_{\mathrm{s}}{ }^{127}$ Such a contribution was suggested for t - $\mathrm{BuBr}^{79.115 .116}$ and endo-2-norbornyl tosylate, ${ }^{78}$ and it may be responsible for the higher $k_{\text {solv }}$ values of the primary systems 26 and 32 compared with the secondary systems 29 and 36. Hence, for these systems the $k_{\text {solv }}$ values in Figure 1 are above

[^14]the expected position on the basis of the cation stability, and the corrected values may cover a much narrower range.

Second, extrapolation of the approximate linear line of region c to very low $k_{\text {solv }}$ values may be unjustified, so that we cannot decide when $k_{\mathrm{W}}>k_{\text {diff }}$. However, the low selectivity of the relatively stable 2-methyl-2-adamantyl cation, where $k_{\mathrm{N}} \gg k_{\text {diff }}$, suggests that k_{W} cannot differ much from $k_{\text {diff. }}$. It should exceed it for the less stable cations in regions d and e. Finally, if the inherent selectivity $\log \left(k_{\mathrm{N}}{ }^{\text {in }} / k_{\mathrm{W}}\right)$ obeys the RSP it should decrease on decreasing $k_{\text {sobv, }}$, and its value at low $k_{\text {solv }}$ should be much lower than 3×10^{5}. In this case $k_{\mathrm{N}}\left[\mathrm{N}_{3}{ }^{-}\right]$will not reach $10^{13} \mathrm{~s}^{-1}$ much before this value is reached by $k_{\mathrm{W}}\left[\mathrm{H}_{2} \mathrm{O}\right]$, so that the concerted route will not be enforced on all the systems in these regions, and it may take place only for the less hindered primary and simple secondary derivatives.

In conclusion, we believe that the selectivities in region d reflect mainly a stepwise reaction via an ion pair whose formation is assisted by a preassociation with $\mathrm{M}^{+} \mathrm{N}_{3}{ }^{-}$or with $\mathrm{N}_{3}{ }^{-}$. In some cases a concerted reaction with a low extent of $\mathrm{C}-\mathrm{Nu}$ bond formation in the transition state may replace or operate in parallel to the stepwise route. The actual selectivity values may decrease on increasing the steric hindrance of approach to the positive reaction site. For example, the methyl-bridged cation derived from compounds 26 and 29 is more hindered than the unsubstituted cation derived from compounds 32 and 36 , and the selectivity of the former is indeed lower. Other important factors affecting the selectivity are the stability of the cationoid part, the nature of the ion pair and its solvation, the degree of electrophilic assistance to the ionization, the possibility of a general base catalysis by $\mathrm{N}_{3}{ }^{-}$ and the nucleofuge to the water reaction, and the structure of a possible concerted transition state. Our knowledge of the importance of these effects in general and their dependence on the structure of R^{+}is small. Further analysis seems too speculative and should wait until further experimental data are available.

Conclusions

The extended $\log k_{\text {solv }}$ vs. $\log \left(k_{\mathrm{N}} / k_{\mathrm{W}}\right)$ plot is not linear. Phenomenologically, it comprises of regions of nearly constant selectivity, both high and low, of apparent reactivity-selectivity, and of inverted RS behavior. Analysis of the plot in terms of the intermediates lifetimes suggests that the reactions of most of the intermediate carbocations with $\mathrm{N}_{3}{ }^{-}$are diffusion controlled. The approximate linear RS behavior over an appreciable structural range is due to the reactivity-stability relationship between log $k_{\text {solv }}$ and k_{w}. For systems that give very reactive R^{+}the reaction
is either concerted or proceeds via a preassociation stepwise route. Steric effects seem to be important in determining the existence of cationoid intermediates and their lifetimes. Ion pairs play an important role in the overall solvolysis reaction, and since they are involved in many of the reactions that define the approximate RS line, conclusions concerning the intermediacy of ion pairs that are based on the linearity of the line or deviations from it ${ }^{9}$ \$ 10 should be drawn with extreme caution. ${ }^{2 b}$ The extrapolations for temperature, solvent, nucleofuge, and other parameters that are required for obtaining the plot may be responsible for the appreciable scatter of the points. New data that should be measured under more similar conditions for all compounds will possibly reveal mechanistic aspects that are lost due to the present extrapolations.

Acknowledgment. We are indebted to Professors W. P. Jencks, C. D. Ritchie, and R. W. Taft and to Dr. J. P. Richard for communicating unpublished results and for helpful discussions and to Professors D. J. Raber, D. McLennan, and K. Okamoto and to Drs. R. More O'Ferrall and H. Mayr for comments. This research was supported by the Israel Academy for Science and Humanities, to which we are indebted.

Registry No. 1, 14368-49-1; 2, 49757-42-8; 3, 86696-30-2; 4, 7525-$23-7$; 5, 76-83-5; 6, 82022-42-2; 7, 1538-89-2; 8, 13389-70-3; 9, 86696-31-3; 10, 49852-84-8; 11, 58114-01-5; 12, 51830-43-4; 13, 779-14-6; 14, $19935-80-9 ; 15,63537-05-3 ; 16,19767-95-4 ; 17,24463-19-2 ; 18,6196-$ 85-6; 19, 90-99-3; 20, 824-94-2; 21, 2362-36-9; 22, 134-83-8; 23, 37723-65-2; 24, 456-16-6; 25, 507-20-0; 26, 10523-77-0; 27, 4039-92-3; 28, 58114-05-9; 29, 10523-97-4; 30, 73492-32-7; 31, 86696-32-4; 32, 5911-08-0; 33, 765-91-3; 34, 19935-76-3; 35, 1688-17-1; 36, 1120-57-6; 37, 4125-46-6; 38, 34197-99-4; 39, 935-56-8; 40, 75-29-6; 41, 628-61-5; 42, 1556-08-7; 43, 86696-33-5; 44, 20983-44-2; 45, 826-00-6; 46, 20488-11-3; 47, 19935-75-2; 48, 10304-81-1; 49, 824-47-5; 50, 2999-06-6; 51, 34197-99-4; 52, 826-00-6; 54, 7346-41-0; $\mathrm{Ph}_{2} \mathrm{CHBr}, 776-74-9$; $\mathrm{Ph}_{3} \mathrm{CBr}, 596-43-0 ; \mathrm{Ph}_{3} \mathrm{CF}, 427-36-1 ; \mathrm{Ph}_{3} \mathrm{COAc}, 971-85-7 ; \mathrm{Ph}_{3} \mathrm{CSCN}$, 35036-90-9; p - $\mathrm{TolCH}(\mathrm{Ph}) O P N B, 32435-32-8 ; p-\mathrm{AnCH}(\mathrm{Me}) \mathrm{OPNB}$, 58287-11-9; c-C5 $\mathrm{H}_{9} \mathrm{OMs}, \quad 16156-57-3$; $p-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me})-$ $\mathrm{SC}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}-3,5,86696-34-6 ; p-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{OAc}, 26921-60-8$; $\mathrm{An}_{2} \mathrm{CHOCOC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6,36366-56-0 ; p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OPNB}) \mathrm{Ph}$, $54059-78-8 ; t$ - $\mathrm{BuBr}, 507-19-7$; c-C5 $\mathrm{H}_{9}-\mathrm{OTs}, 3558-06-3 ;$ c- $\mathrm{C}_{6} \mathrm{H}_{11}-\mathrm{Cl}$, 542-18-7; c-C $\mathrm{C}_{8} \mathrm{H}_{15}$-OBs, 28074-08-0; c- $\mathrm{C}_{8} \mathrm{H}_{11}$-OTs, 6597-09-7; $\mathrm{HOEH}_{2} \mathrm{CH}_{2} \mathrm{~S}^{-}, 57966-62-8 ; \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{SH}, 60-24-2$; $\mathrm{MeOCOCH}_{2} \mathrm{~S}^{-}$, 64743-45-9; $\mathrm{MeCH}_{2} \mathrm{CH}_{2} \mathrm{SH}, 107-03-9$; $\mathrm{NCS}^{-}, 302-04-5 ; \mathrm{BH}_{4}^{-}, 16971-$ 29-2; $\mathrm{An}_{3} \mathrm{C}^{+}, 14039-13-5 ; \mathrm{An}_{2} \mathrm{C}^{+}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{Me}-0\right)$, 86709-63-9; с$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OMs}$, 696-77-5; c-C4 $\mathrm{H}_{7} \mathrm{Oms}$, 22524-45-4; 1-Me-c$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OMs}, 697-52-9 ; 1-\mathrm{Me}-\mathrm{c}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{OMs}, 935-20-6 ; \mathrm{Bu}_{4} \mathrm{NN}_{3}, 993-$ 22-6; EtOH, 64-17-5; $\mathrm{NaN}_{3}, 26628-22-8 ; \mathrm{N}_{3}^{-}, 14343-69-2 ; \mathrm{H}_{2} \mathrm{O}, 7732-$ 18-5; 1-adamantyl bromide, 768-90-1; 2-adamantyl tosylate, 25139-43-9.

[^0]: (1) Presented in part at the Euchem Conference on Correlation Analysis in Organic Chemistry (CAOC II), July 18-23, Hull, England, Abstract 0/19.
 (2) Preliminary communications: (a) Ta-Shma, R.; Rappoport, Z. Tetrahedron Lett. 1982, 23, 781. (b) Rappoport, Z.; Ta-Shma, R. J. Org. Chem. 1982, 47, 5207.

[^1]: (13) Kirmse, W.; Schnurr, O.; Jendrulla, H. Chem. Ber. 1979, 112, 2120.
 (14) Kovacevic, D.; Majerski, Z.; Borcic, S.; Sunko, D. E. Tetrahedron 1972, 28, 2469.
 (15) Kevill, D. N.; Kim, C. J. Org. Chem. 1974, 39, 3085.
 (16) Hillier, K.; Scott, J. M. W.; Barnes, D. J.; Steele, F. J. P. Can. J. Chem. 1976, 54, 3312.
 (17) For a different view, see ref 4 c .
 (18) Pross, A. J. Am. Chem. Soc. 1976, 98, 776.
 (19) (a) Ritchie, C. D.; Skinner, G. A.; Badding, V. G. J. Am. Chem. Soc. 1967, 89, 2063. (b) Diffenbach, R. A.; Sano, K.; Taft, R. W. Ibid. 1966, 88, 4747. (c) Bunton, C. K.; Huang, J. Ibid. 1972, 94, 3536; (d) Ibid. 1973, 95 , 2701; (e) Ibid. 1974, 96, 515. (f) Ritchie, C. D.; Wright, D. J.; Huang, D. S.; Kamego, A. A. Ibid. 1975, 97, 1163. (g) Ride, J. N.; Wyatt, P. A. H.; Zochowski, Z. M. J. Chem. Soc., Perkin Trans. 2 1974, 1188.
 (20) Bateman, L. C.; Church, M. G.; Hughes, E. D.; Ingold, C. K.; Taher, N. A. J. Chem. Soc. 1940, 979.
 (21) (a) Bailey, T. H.; Fox, J. R.; Jackson, J.; Kohnstam, G.; Queen, A Chem. Commun. 1966, 122. (b) Kohnstam, G.; Schillaker, B. J. Chem. Soc. 1959, 1915.

[^2]: (28) (a) Goering, H. L.; Levy, J. F. J. Am. Chem. Soc. 1964, 86, 120. (b) Sneen, R. A. Ibid. 1960, 82, 4261.
 (29) Arnett, E. M.; Petro, C.; Schleyer, P. v. R. J. Am. Chem. Soc. 1979, 101, 522.
 (30) Dortman's report ${ }^{12 \mathrm{j} .31}$ that for the reaction of $\mathrm{Bu}_{3} \mathrm{~N}$ with carbenium ions $k\left(\mathrm{Ph}_{3} \mathrm{C}^{+}\right) \ll k\left(\mathrm{Ph}_{2} \mathrm{CH}^{+}\right) \sim k\left(\mathrm{PhCH}_{2}{ }^{+}\right)$shows that a quantitative correlation between the ion reactivities and their stabilities is not always fulfilled.
 (31) Sujdak, R. J.; Jones, R. L.; Dorfman, L. M. J. Am. Chem. Soc. 1976, 98, 4875.
 (32) (a) Sneen, R. A.; Rosenberg, A. M. J. Am. Chem. Soc. 1961, 83, 900. (b) Sneen, R. A.; Kay, P. S. Ibid. 1972, 94, 6983.

[^3]: (33) Raber, D. J.; Harris, J. M.; Schleyer, P. v. R. J. Am. Chem. Soc. 1971, 93, 4829.
 (34) (a) Winstein, S.; Fainberg, A. H. J. Am. Chem. Soc. 1956, 78, 2770. (b) Brown, H. C.; Dickason, W. C. Ibid. 1969, 91, 1226. (c) Hughes, E. D. J. Chem. Soc. 1935, 255.
 (35) (a) Fox, J. R.; Kohnstam, G. J. Chem. Soc. 1963, 1593. (b) Cowie, G. R.; Fitches, H. J. M.; Kohnstam, G. Ibid. 1963, 1585.
 (36) Winstein, S.; Fainberg, A. H.; Grunwald, E. J. Am. Chem. Soc. 1957, 79, 4146.

[^4]: (48) E.g.: (a) Gregoriou, G. A. Tetrahedron Lett. 1974, 235. (b) McLennan, D. Acc. Chem. Res. 1976, 9, 281.
 (49) (a) Sneen, R. A.; Larsen, J. W. J. Am. Chem. Soc. 1969, 91, 362. (b) Sneen, R. A. Acc. Chem. Res. 1973, 6, 46.
 (50) Ritchie, C. D. J. Am. Chem. Soc. 1971, 93, 7324.

[^5]: (51) Ritchie, C. D.; Hofelich, T. C. J. Am. Chem. Soc. 1980, 102, 7039. (52) (a) McDonald, J. R.; Rabalais, J. W.: McGlynn, S. P. J. Chem. Phys. 1970, 52, 1332. (b) Weast, R. C. "Handbook of Chemistry and Physics" 50th ed.; The Chemical Rubber Co.: Cleveland, $\mathrm{OH}, 1969-1970$; p D-118.
 (53) Bunton, C. A.; Del Pasco, T. W.; Dunlop, A. M.; Yang, K.-H. J. Org. Chem. 1971, 36, 887.

[^6]: (54) For reaction of N_{3}^{-}with $\mathrm{ArCH}_{2} \mathrm{~S}^{+} \mathrm{Me}_{2} \mathrm{OTs}^{-} k_{2}(80 \%$ dioxane $) / k_{2}-$ $\left(\mathrm{H}_{2} \mathrm{O}\right)=113-241$ (Swain, G. C.; Rees, T.; Taylor, L. J. J. Org. Chem. 1963, 28, 2903).
 (55) Nair, M. R.: Raveendran, G. Indian J. Chem., Sect. B 1981, 20B, 258.
 (56) Majerski, Z.; Borcic, S.; Sunko, D. E. Tetrahedron 1969, 25, 301
 (57) Hill, E. A.; Gross, M. L.; Stasiewicz, M.: Manion, M. J. Am. Chem. Soc. 1969, 91, 7381.
 (58) Richard, J. P., private communication, (a) For compounds 3, 28, and 34 the $k_{\mathrm{W}} / k_{\text {TFE }}$ values are $3,0.8$, and 1.3 , respectively, and the ratios for other compounds in this series show a gradual change. (b) Value for $k_{\mathrm{MeOCOCH}_{2} \mathrm{~s}}-/ k_{\mathrm{W}}$ that serves as an estimate for $k_{\mathrm{N}} / k_{\mathrm{W}}$. ${ }^{25 a}$ It differs from the value reported in ref 25 a.
 (59) Somewhat surprisingly the small differences between the $k_{\mathrm{E}} / k_{\mathrm{W}}$ values for the $\mathrm{PhCH}_{2} \mathrm{X}$ and $2-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{X}$ systems, $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{OTs}$, were ascribed to a reaction via the solvent-separated ion pairs.98
 (60) Tsuno, Y.; Kusuyama, Y.; Sawada, M.: Fujii, T.; Yukawa, Y. Bull. Soc. Chem. Jpn. 1975, 48, 3337.
 (61) Fox, J. R.; Kohnstam, G. Proc. Chem. Soc. 1964, 115.
 (62) Swain, C. G.; Maclachlan, A. J. Am. Chem. Soc. 1960, 82, 6995.
 (63) Hughes. E. D.; Ingold, C. K.; Taher, N. A. J. Chem. Soc. 1940, 949.
 (64) Shiner, V. J., Jr.; Buddenbaum, W. E.; Murr, B. L.: Lamaty, G. J. Am. Chem. Soc. 1968, 90, 418.
 (65) Church, M. D.; Hughes, E. D.; Ingold, C. K. J. Chem. Soc. 1940, 966
 (66) Church, M. D.; Hughes, E. D.; Ingold, C. K.; Taher. N. A. J. Chem. Soc. 1940, 971 .
 (67) Brown, H. C.; Borkowski, M. J. Am. Chem. Soc. 1952, 74. 1894

[^7]: (98) For instance, if Ingold's "collapse" hypothesis ${ }^{88,20,38}$ holds and R^{+} reacts with water from the solvation shell whereas $\mathrm{N}_{3}{ }^{-}$has to penetrate through this shell in order to react, $E_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{O}\right)$ may become lower than $E_{\mathrm{a}}\left(\mathrm{N}_{3}{ }^{-}\right)$.

[^8]: (99) The reaction of Cl^{-}with the cation formed in the solvolysis of $\mathrm{Ph}_{2} \mathrm{CCl}_{2}$, a compound with $k_{\text {solv }}$ similar to those of compounds 12-14 in Table III, in 70% and 85% acetone, is probably not diffusion controlled since $E_{\mathrm{a}}\left(\mathrm{Cl}^{-}\right)$ $-E_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{O}\right)=1 \mathrm{kcal} \cdot \mathrm{mol}^{-1} .{ }^{216}$
 (100) Golomb ${ }^{39}$ who solvolyzed $\mathrm{Tol}_{2} \mathrm{CHCl}$ under conditions very similar to Ingold's ${ }^{38}$ found [$\left.\% \mathrm{RN}_{3}\right]_{\infty}=50$ at $25^{\circ} \mathrm{C}$ whereas Ingold's value is 60% at $0^{\circ} \mathrm{C}$.
 (101) Swain, C. G.; Scott, C. B. J. Am. Chem. Soc. 1953, 75, 141.
 (102) The reported relative reactivities for capture of $\mathrm{Ph}_{2} \mathrm{CH}^{+}$by nucleophiles in MeNO_{2} are $\mathrm{N}_{3}{ }^{-}$(ca. 5) $>\mathrm{Cl}^{-}(2.96)$ (Pocker, Y. J. Chem. Soc. 1959, 3939). However, these values may reflect diffusion-controlled values (cf. ref 99).
 (103) Comparison of fewer compounds was reported previously by Swain ${ }^{41}$ and by Huisgen (Huisgen, R. Angew. Chem. Int. Ed. Engl. 1970, 9, 751). (104) The rate constants for the reactions of $\mathrm{Cl}^{-}, \mathrm{Br}^{-}$, and I^{-}with $\mathrm{Ph}_{3} \mathrm{C}^{+}$, $\mathrm{Ph}_{2} \mathrm{CH}^{+}$, and PhCH_{2}^{+}in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ were determined by pulse radiolysis and found to be nearly the same ($6 \times 10^{10} \mathrm{M}^{-1} \mathrm{~s}^{-1}$); a diffusion-controlled reaction was suggested. ${ }^{31}$

[^9]: (105) Bunton, C. A.; Huang, S. K.; Paik, C. H. J. Am. Chem. Soc. 1975, 97, 6262.
 (106) The only similar analysis known to us is due to: Hegarty, A. F.; Lomas, J. S.; Wright, W. V.; Bergmann, E. D.; Dubois, J. E. J. Org. Chem. 1972, 37,2222 , who used with limited success a similar equation for treating substituent effects in the bromination of 1,1-diarylethylenes substituted in the two rings. For a related treatment in elimination reactions see: McLennan, D. J.; Wong, R. J. J. Chem. Soc., Perkin Trans. 2 1972, 279.
 (107) Cook, M. J.; Dassanayake, N. L.; Johnson, C. D.; Katritzky, A. R.; Toone, T. W. J. Am. Chem. Soc. 1975, 97, 760.

[^10]: (108) In a previous work k_{w} and k_{N} values on the basis of the assumption of additivity for k_{W} and on the selectivity of $\mathrm{An}_{3} \mathrm{C}^{+}$were reported. ${ }^{246}$ However, they included an error in the $\left[\mathrm{H}_{2} \mathrm{O}\right]$ term.
 (109) For 14 systems (compounds 5-23, excluding Jencks' systems ${ }^{25 a}$ and compounds 10, and 17) the slope is 1.48 ($r=0.967$); if Jencks' compounds are included, the slope $=1.45(r=0.857)$. In both cases, $\log k_{\text {solv }}=-6.2$ at $\log \left(k_{N} / k_{W}\right)=0$.
 (110) The ρ^{+}values for the solvolysis of $\mathrm{ArC}(\mathrm{Cl}) \mathrm{Ph}_{2}$ in 80% acetone at $25^{\circ} \mathrm{C}(-3.53)$ and for the reaction of $\mathrm{ArC}^{+} \mathrm{Ph}_{2}$ with water (+2.3) give a similar ratio of 1.5 .
 (111) In contrast, a $\log k_{\text {solv }}$ vs. $\log \left(k_{N} / k_{\mathrm{w}}\right)$ plot for the benzhydryl systems is scattered, probably reflecting the approximations in deriving the data.

[^11]: (112) (a) Shafer, S. G.; Harris, J. M. J. Org. Chem. 1981, 46, 2164. (b) Cf. also: McLennan, D. J.; Martin, P. L. Tetrahedron Lett. 1973, 4215; Aust. J. Chem. 1979, 32, 2361.
 (113) (a) McLennan, D. J.; Martin, P. L. J. Chem. Soc., Perkin Trans. 2 1982, 1091 ; (b) Ibid. 1982, 1099.
 (114) Shafer and Harris ${ }^{12}$ were also concerned about the contradiction with the kinetic evidence in the reaction with $\mathrm{N}_{3}{ }^{-}$.

[^12]: (115) Bentley, T. W.; Bowen, C. T.; Parker, W.; Watt, C. I. F. J. Am. Chem. Soc. 1979, 101, 2486.
 (116) For an opposing view that in the solvolysis of tert-butyl halides nucleophilic assistance is relatively unimportant see: Abraham, M. H.; Taft, R. W.; Kamlet, M. J. J. Org. Chem. 1981, 46, 3053. For an undecided position concerning nucleophilic assistance in the solvolysis of tert-butyldimethylsulfonium ion see: Kevill, D. N.; Kamil, W. A.; Anderson, S. W. Tetrahedron Lett. 1982, 23, 4635.
 (117) Banert, K.; Kirmse, W. J. Am. Chem. Soc. 1982, 104, 3766.

[^13]: (118) Anh, N. T.; Minot, C. J. Am. Chem. Soc. 1980, 102, 103. Gray, R. W.; Chapleo, C. B.; Vergnani, T.; Dreiding, A.; Liesner, M.; Seebach, D. Helv. Chim. Acta 1975, 58, 2524 and references therein. For the special case of cyclopropane, see: Turnkenburg, L. A. M.; de Wolf, W. H.; Bickelhaput, F.: Stam, C. H.; Konijn, M. J. Am. Chem. Soc. 1982, 104, 3471 and references therein.
 (119) Perrin, C. L.; Pressing, J. J. Am. Chem. Soc. 1971. 93, 5705.
 (120) Takeuchi, K.; Kato, Y.; Moriyama, T.; Okamoto, K. Chem. Lett. 1981, 935.
 (121) (a) Raber, D. J.; Neal, W. C.; Dukes, M. D.; Harris, J. M.; Mount, D. L. J. Am. Chem. Soc. 1978, 100, 8137. (b) Bentley, T. W.; Bowen, C. T.; Marten, D. H.; Schleyer, P. v. R. Ibid. 1981, 103, 5466.
 (122) We discuss here the consequences of the suggested bridging in the exo-2-norbornyl system without offering any new data related to the controversy concerning bridging in these systems. For recent reviews concerning and challenging the concept of bridging in the norbornyl derivatives see: Brown, H. C. "The Nonclassical Ion Problem"; Plenum Press: New York, 1977. Brown, H. C. "International Symposium on Organic Reaction Mechanisms. New Concepts and Prospects", Kyushu University, Fukuoka, Japan, August 18-21, 1982, Abstr pp 5-20.
 (123) Harris, J. M.; Mount, D. L.; Smith, M. R.; McManus, S. P. J. Am. Chem. Soc. 1977, 99, 1283.
 (124) Majerski. Z.; Nikoletic, M.; Borcic, S.; Sunko, D. E. Tetrahedron 1967, 23, 661.
 (125) Concerning the question whether these systems are classical or nonclassical see: Olah, G. A.; Jeuell, C. L.; Kelly, D. P.; Porter, R. D. J. Am. Chem. Soc. 1972, 94, 146. Olah, G. A.; Liang, G.; Babiak, K. A.; Ford, T. M.; Goff, D. L.; Morgan, T. K., Jr.; Murray, R. K., Jr., Ibid. 1978, $100,1494$. Olah, G. A.; Surya Parkash, G. K.; Donovan, D. J.; Yavari, I. Ibid. 1978, 100, 7085 and references therein.

[^14]: (126) We note that the order of the $k_{\mathrm{N}} / k_{\mathrm{W}}$ values for the k_{s} process for $\mathrm{ArCHMeCH} 2 \mathrm{OTs} \mathrm{Ar}=\mathrm{An}>\mathrm{Ph}>$ Tol do not follow the order of Hammett's substituent contants, whereas the values for $\mathrm{ArCH}_{2} \mathrm{CH}$ (OTs) Me follow the expected order $\mathrm{Ph}>\mathrm{Tol}>\mathrm{An}$. For the k_{Δ} process the order is $\mathrm{An}>\mathrm{Ph}>$ Tol for both isomers. We wonder if the differences are due to small errors involved in the separation of $k_{\text {solv }}$ to its k_{s} and k_{s} components.
 (127) Harris, J. M. Prog. Phys. Org. Chem. 1974, 11, 89.

